PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Assessment of the Experimental Thermoelectric Cooling System Effectiveness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solid-state thermoelectric elements, such as thermoelectric (TE) modules, can be used as cooling devices. Small-sized TE modules, characterized by: lack of moving parts, no required refrigerants application as well as variable possible installation and operation positions, allow, in several specified cases, achieving the advantage in cooling process over the conventional refrigeration devices. This paper presents the results of the preliminary numerical determination of energetic efficiency of thermoelectric cooling system, applied for cooling a small-scale experimental room. The heat exchangers used in the cooling system consisted of heat sinks and radiators installed on the both sides of the TE module. The numerical assessment included in this paper, based on a 3D model reflecting the experimental room and thermoelectric cooling system, allowed determining the relation between TE module power supply characteristics and cooling effects, as well as time-related temperature distribution inside the modeled experimental room. The commercial modeling software FLUENT, ANSYS 12.0 by ANSYS Inc. was applied in numerical calculations. The results of the performed laboratory studies were used as a basis for model development, required input data, initial and boundary conditions. The results of laboratory tests showed the influence of amperage of power supply on the efficiency of cooling characteristics, as well as distribution of air temperature inside the experimental room. Calibration and validation of the developed model was also based on the results of laboratory experiment. The obtained results of numerical calculations showed the influence of amperage of power supply on efficiency of cooling characteristics as well as distribution of air temperature inside the experimental room.
Rocznik
Strony
99--110
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Afshari F. 2021. Experimental and numerical investigation on thermoelectric coolers for comparing air-to-water to air-to-air refrigerators. Journal of Thermal Analysis and Calorimetry, 144(3), 855–868.
  • 2. Alahmer A., Khalid M.B., Beithou N., Borowski G., Alsaqoor S. and Alhendi H. 2022. An Experimental Investigation into Improving the Performance of Thermoelectric Generators. Journal of Ecological Engineering, 23(3), 100–108.
  • 3. Aranguren P., DiazDeGarayo S., Martínez A. Araiz M. and Astrain D. 2019. Heat pipes thermal performance for a reversible thermoelectric cooler-heat pump for a nZEB. Energy and Buildings, 187, 163–172.
  • 4. Comini G., Del Giudice S. 1985. A (k-epsilon) model of turbulent flow. Numerical Heat Transfer, 8(2), 133–147.
  • 5. Dimri N., Tiwari A., Tiwari G.N. 2018. Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency. Solar Energy, 166, 159–170.
  • 6. Elarusi A., Attar A. and Lee H. 2017. Optimal design of a thermoelectric cooling/heating system for car seat climate control (CSCC). Journal of Electronic Materials, 46(4), 1984–1995.
  • 7. Enescu D., Virjoghe E.O. 2014. A review on thermoelectric cooling parameters and performance. Renewable and Sustainable Energy Reviews, 38, 903–916.
  • 8. He W., Zhang G., Zhang X.X., Ji J., Li G.Q., Zhao X.D. Recent development and application of thermoelectric generator and cooler. Appl. Energy. 2015, 143, 1–25.
  • 9. IEA, 2018: https://www.iea.org/reports/the-future-of-cooling
  • 10. Irshad K., Habib K., Basrawi F., Saha B.B. 2017. Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate. Energy, 119, 504–522.
  • 11. Jangonda C., Patil K., Kinikar A., Bhokare R. and Gavali M.D. 2016. Review of various application of thermoelectric module. International journal of innovative research in science, engineering and technology, 5(3), 3393–3400.
  • 12. Kane A., Verma V., Singh B. 2017. Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel. Renewable and Sustainable Energy Reviews, 75, 1295–1305.
  • 13. Lineykin S., Ben-Yaakov S. 2007. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications, 43(2), 505–551.
  • 14. Liu Z.B., Zhang L., Gong G., Luo Y., Meng F. 2015. Experimental study and performance analysis of a solar thermoelectric air conditioner with hot water supply. Energy and buildings, 86, 619–625.
  • 15. Lou L., Shou D., Park H., Zhao D., Wu Y.S., Hui X., Yang R., Kan E.C. and Fan J. 2020. Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. Energy and Buildings, 226, 110374.
  • 16. Mirmanto M., Syahrul S. and Wirdan Y. 2019. Experimental performances of a thermoelectric cooler box with thermoelectric position variations. Engineering Science and Technology, an International Journal, 22(1), 177–184.
  • 17. Sarbu I., Dorca,A. 2018. A comprehensive review of solar thermoelectric cooling systems. International Journal of Energy Research, 42(2), 395–415.
  • 18. Selvan K.V., Hasan M.N. and Mohamed Ali M.S. 2019. State-of-the-art reviews and analyses of emerging research findings and achievements of thermoelectric materials over the past years. Journal of Electronic Materials, 48(2), 745–777.
  • 19. Seo Y.M., Ha M.Y. Park S.H., Lee G.H., Kim Y.S. and Park Y.G. 2018. A numerical study on the performance of the thermoelectric module with different heat sink shapes. Applied Thermal Engineering, 128, 1082–1094.
  • 20. Soleimani Z., Zoras S., Ceranic B., Shahzad S. and Cui Y. 2020. A review on recent developments of thermoelectric materials for room-temperature applications. Sustainable Energy Technologies and Assessments, 37, 100604.
  • 21. Su C., Dong W., Deng Y., Wang Y., Liu X. 2018. Numerical and experimental investigation on the performance of a thermoelectric cooling automotive seat. Journal of Electronic Materials, 47(6), 3218–3229.
  • 22. Twaha S., Zhu J., Yan Y., Li B. 2016. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews, 65, 698–726.
  • 23. Wang P., Liu Z., Chen D., Li W., Zhang L. 2021. Experimental study and multi-objective optimisation of a novel integral thermoelectric wall. Energy and Buildings, 252, 111403.
  • 24. Xu X., Van Dessel S., Messac A. 2007. Study of the performance of thermoelectric modules for use in active building envelopes. Building and Environment, 42(3), 1489–1502.
  • 25. Yilmazoglu M.Z. 2016. Experimental and numerical investigation of a prototype thermoelectric heating and cooling unit. Energy and Buildings, 113, 51–60.
  • 26. Zhao D., Tan G. 2014. A review of thermoelectric cooling: materials, modeling and applications. Applied thermal engineering, 66(1–2), 15–24.
  • 27. Zhao D., Lu X., Fan T., Wu Y.S., Lou L., Wang Q., Fan J., Yang R. 2018. Personal thermal management using portable thermoelectrics for potential building energy saving. Applied Energy, 218, 282–291.
  • 28. Zoui M.A., Bentouba S., Stocholm J.G., Bourouis M. 2020. A review on thermoelectric generators: Progress and applications. Energies, 13(14), 3606.
  • 29. Żelazna A., Gołębiowska J. 2020. A PV-Powered TE Cooling System with Heat Recovery: Energy Balance and Environmental Impact Indicators. Energies, 13(7), 1701.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ae5c2bf-4378-4eea-9c81-cba693ccf6fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.