PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of Stress Values in the Surface Layer of Inconel 718 Samples Dedicated to Fatigue Tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work deals with the problem of X-ray stress determination on the samples dedicated to fatigue tests. A number of research studies point out the fact that the processing of hard, difficult to machine materials like nickel superalloys, reveals more than one trend of residual stress versus working parameters of behaviour (Lavella and Berruti, 2010). Many papers have shown that the residual stresses are dependent on a combination of a number of factors. When the above is taken into account simultaneously with the requirements of the internal General Electric specification for the fatigue tests samples preparation (Metallic test specimen preparation, low stress, 2017) the problem of turning and grinding parameters gathers significance. It is well known that the quality of the surface layer, produced during machining, is of vital importance for the fatigue life specially for the components of aircraft produced form nickel superalloys e.g. Inconel 718 (Kortabarri et al., 2011). That is why the surface layer’s properties are described in detail by the standards. The aim of the work is to determine one of the most influential features from the point of view of fatigue life, i.e. the stress state on the surface layer with one non-destructive method - the diffraction analysis.
Słowa kluczowe
Rocznik
Tom
Strony
78--86
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256, Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256, Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Aviation, al. Krakowska 110/114, 02-256, Warsaw, Poland
Bibliografia
  • [1] Arunachalam, R., Mannan, M.A. (2000). Machinability of Nickel-Based High Temperature Alloys. Machining Science and Technology 4, pp. 127-168. 10.1080/10940340008945703.
  • [2] Arunachalam, R.M., Mannan, M.A., Spowage, A.C. (2004). Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools, International Journal of Machine Tools and Manufacture, 44, pp. 879-887. https://doi.org/10.1016/j.ijmachtools.2004.02.016.
  • [3] Ayesta, I., Izquierdo, B., Flaño, O., Sánchez, J.A., Albizuri, J. and Avilés, R. (2016). Influence of the WEDM process on the fatigue behavior of Inconel® 718, International Journal of Fatigue, 92, pp. 220-233. 10.1016/j.ijfatigue.2016.07.011.
  • [4] Berruti, T., Lavella, M. and Gola, M.M. (2009). Residual Stresses on Inconel 718 Turbine Shaft Samples After Turning, Machining Science and Technology, 13, pp. 543-560. 10.1080/10910340903451472.
  • [5] Cullity, B.D. (1964). Podstawy dyfrakcji promieni rentgenowskich, Państwowe Wydawnictwo Naukowe.
  • [6] Ezugwu, E.O. (2004). High speed machining of aero-engine alloys, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26, pp. 1-11. 10.1590/S1678-58782004000100001.
  • [7] Fitzpatrick, M.E., Fry, A.T., Holdway, P., Kandil, F.A., Shackleton, J., Suominen, L. (2005). Determination of residual stresses by X-ray diffraction,  Measurement Good Practice Guide No. 52, National Physical Laboratory.
  • [8] Hilley, M.E. (Ed.) (1971). Residual stress measurement by X-ray diffraction-SAE J784a, Society of Automotive Engineers, Warrendale, PA.
  • [9] Hua, Y. and Liu, Z. (2018). Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718, Materials, 11(6), p. 879. https://doi.org/10.3390/ma11060879.
  • [10] Kawagoishi, N., Chen, Q., Kondo, E., Goto, M. and Nisitani, H. (1999). Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy, Journal of Materials Engineering and Performance, 8, pp. 152-158. https://doi.org/10.1361/105994999770346981.
  • [11] Kortabarri, A., Madariag, A., Fernandez, E., Esnaol, J.A. and Arrazola, P.J. (2011). A comparative study of residual stress profiles on Inconel 718 induced by dry face turning, Procedia Engineering, 19, pp. 228-234. 10.1016/j.proeng.2011.11.105.
  • [12] Lavella, M., and Berruti, T. (2009). Residual Stress on Inconel 718 Turbine Components after Machining, Key Engineering Materials, 417-418, pp. 601-604. https://doi.org/10.4028/www.scientific.net/kem.417-418.601.
  • [13] Ma, Y., Zhang, J., Feng, P., Yu, D. and Xu, C. (2018). Study on the evolution of residual stress in successive machining process, The International Journal of Advanced Manufacturing Technology, 96, pp. 1025-1034. https://doi.org/10.1007/s00170-017-1542-0.
  • [14] General Electric Internal Standard. (2017). Metallic test specimen preparation, low stress.
  • [15] European Standard. (2008). Non-destructive testing — Test method for residual stress analysis by X-ray diffraction.
  • [16] European Standard. Test Method for Verifying the Alignment of X-Ray Diffraction Instrumentation for Residual Stress.
  • [17] Noyan, I.C., Cohen, J.B. (2013). Residual Stress: Measurement by Diffraction and Interpretation. Springer.
  • [18] Outeiro, J.C., Pina, J.C., M’Saoubi, R., Pusavec, F. and Jawahir, I.S. (2008). Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Annals, 57, pp. 77-80. https://doi.org/10.1016/j.cirp.2008.03.076.
  • [19] Pawade, R.S., Joshi, S.S. and Brahmankar, P.K. (2008). Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 48, pp. 15-28. 10.1016/j.ijmachtools.2007.08.004.
  • [20] Pei-zhuo, W., Zhan-shu, H., Yuan-xi, Z. and Shu-sen, Z. (2017). Control of Grinding Surface Residual Stress of Inconel 718. Procedia Engineering, 174, pp. 504-511. 10.1016/j.proeng.2017.01.174.
  • [21] Prevéy, P.S. (1987). The measurement of subsurface residual stress and cold work distributions in nickel base alloys, Residual Stress in Design, Process and Materials Selection, WB Young, ed., ASME, Metals Park, OH, pp. 11-19.
  • [22] Repper, J., Hofmann, M., Krempaszky, C., Wimpory, R.C., Petry, W. and Werner, E. (2009). Microstrain accumulation in multiphase superalloys, Powder Diffraction 24, pp. S65-S67. 10.1154/1.3134582.
  • [23] Sharman, A.R.C., Hughes, J.I. and Ridgway, K. (2006). An analysis of the residual stresses generated in Inconel 718TM when turning, Journal of Materials Processing Technology 173, pp. 359-367.
  • [24] Sinha, M.K., Setti, D., Ghosh, S. and Venkateswara Rao, P. (2016). An investigation on surface burn during grinding of Inconel 718, Journal of Manufacturing Processes 21, pp. 124-133. 10.1016/j.jmapro.2015.12.004.
  • [25] Taricco, F. (2015). Effect of Machining and Shot Peening on the Residual Stresses of Superalloy Turbine Discs, Presented at the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers Digital Collection.
  • [26] Wang, J., Zhang, D., Wu, B. and Luo, M. (2017). Numerical and Empirical Modelling of Machining-induced Residual Stresses in Ball end Milling of Inconel 718, Procedia CIRP, 16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO) 58, pp. 7-12.
  • [27] Yao, C.F., Jin, Q.C., Huang, X.C., Wu, D.X., Ren, J.X. and Zhang, D.H. (2013). Research on surface integrity of grinding Inconel 718. The International Journal of Advanced Manufacturing Technology, 65, pp. 1019-1030. https://doi.org/10.1007/s00170-012-4236-7.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ae5256c-7892-46e2-afe3-566db8dada17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.