PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Errors of Piezoelectric Sensors used in Weapon Stabilizers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effectiveness of operation of a weapon stabilization system is largely dependent on the choice of a sensor, i.e. an accelerometer. The paper identifies and examines fundamental errors of piezoelectric accelerometers and offers measures for their reduction. Errors of a weapon stabilizer piezoelectric sensor have been calculated. The instrumental measurement error does not exceed 0.1 × 10−5 m/s2. The errors caused by the method of attachment to the base, different noise sources and zero point drift can be mitigated by the design features of piezoelectric sensors used in weapon stabilizers.
Rocznik
Strony
91--100
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr., wzory
Twórcy
  • Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02-486 Warsaw, Poland
Bibliografia
  • [1] Lai, A., James, D.A., Hayes, J.P., Harvey, E.C. (2004). Semi-automatic calibration technique using six inertial frames of reference. Proc. of SPIE × The International Society for Optical Engineering, 5274, 531-542.
  • [2] Lakehal, A., Ghemari, Z. (2016). Suggestion for a new design of the piezoresistive accelerometer. Ferroelectrics, 493(1), 93-102.
  • [3] Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R., Shadura, V. (2015). Aviation gravimetric system. International Journal of Scientific & Engineering Research, 6(7), 1122-1127.
  • [4] Liu, Y., Ji, T., et al. (2016). Calibration and compensation for accelerometer based on Kalman filter and a six-position method. Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 38(1), 94-98, 110.
  • [5] Gao, J.M., Zhang, K.B., et al. (2015). Temperature characteristics and error compensation for quartz flexible accelerometer. International Journal of Automation and Computing, 12(5), 540-550.
  • [6] Korobiichuk, I. (2016). Mathematical model of precision sensor for an automatic weapons stabilizer system. Measurement, http://dx.doi.org/10.1016/j.measurement.2016.04.017.
  • [7] Korobiichuk, I., Bezvesilna, O., et al. (2016). Design of piezoelectric gravimeter for automated aviation gravimetric system. Journal of Automation, Mobile Robotics & Intelligent Systems (JAMRIS), 10(1).
  • [8] Korobiichuk, I., Bezvesilna, O., et al. (2016). Piezoelectric gravimeter of the aviation gravimetric system. Advances in Intelligent Systems and Computing 440. Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.), Challenges in Automation, Robotics and Measurement Techniques. Proc. of AUTOMATION-2016, Warsaw, Poland, 753-763.
  • [9] Korobiichuk, I., Bezvesilna, O., et al. (2015). Stabilization system of aviation gravimeter. International Journal of Scientific & Engineering Research, 6(8), 956-959.
  • [10] Fan, C., Hu, X., et al. (2014). Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors. Sensors, 14(9), 16003-16016.
  • [11] Quinchia, A.G., Falco, G., Falletti, E., Dovis, F., Ferrer, C. (2013). A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors, 13(8), 9549-9588.
  • [12] Karachun, V., Mel’nick, V., Korobiichuk, I., Nowicki, M., Szewczyk, R., Kobzar, S. (2016). The Additional Error of Inertial Sensor Induced by Hypersonic Flight Condition. Sensors, 16(3).
  • [13] Lobanov, V.S., Tarasenko, N.V., et al. (2007). Fiber-optic gyros & quartz accelerometers for motion control. IEEE Aerospace and Electronic Systems Magazine. 22(4), 23-29.
  • [14] Guo, Y., Kakimoto, K.I., Ohsato, H. (2005). (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Materials Letters, 59(2-3), 241-244.
  • [15] Tables of fundamental properties of piezoceramic materials manufactured by Ferropiezoelectric Material Division, devices and tools of Research Institute of Physics SFU [electronic resource]. - Access mode, http://www.piezotech.ru/PKR.htm.
  • [16] Arlou, Y.Y., Tsyanenka, D.A., Sinkevich, E.V. (2015). Wideband computationally-effective worst-case model of twisted pair radiation. Proc. of the International Conference Days on Diffraction, 14-19.
  • [17] Meggiolaro, M.A., Castro, J.T.P.D., Góes, R.C.D.O. (2016). Elastoplastic nominal stress effects in the estimation of the notch-tip behavior in tension. Theoretical and Applied Fracture Mechanics.
  • [18] Korobiichuk, I., Koval, A., Nowicki, M., Szewczyk, R. Investigation of the Effect of Gravity Anomalies on the Precession Motion of Single Gyroscope Gravimeter. Solid State Phenomena, 251, 139-145.
Uwagi
EN
This work was supported by the Ministry of Education and Science of Ukraine (grant No 0115U002089).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ae2617b-5c26-4e5d-89e5-9328bf347f6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.