PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Design of RNA Biosensor Based on Nano-gold and Magnetic Nano-particle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detecting the quality of drinking water is very important in researching the current status and predicting trends of variation, as well as fundamentally solving the water pollution problem. Recently, the application and development of biosensor provide a powerful analytical tool for detecting pollutants of drinking water, but high selectivity, specificity, short response time, and low cost are particularly desired in the detection process. In this paper, RNA molecules in combination with nano-gold and magnetic nano-particles were proposed as design strategies of the biosensor. The proposed designs have distinct advantages over conventional biosensor in the following aspects: the high affinity capacity, sensitivity, and practicability. Our work provided an alternative method to monitor the environment of drinking water, and may find applications in various monitoring fields.
Wydawca
Rocznik
Strony
289--298
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, China
  • School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, China
  • School of Electronic and Information Engineering, Anhui University of Science and Technology, Huainan, China
  • School of mechanical and electrical engineering, Huainan Normal University, Huainan, China
Bibliografia
  • [1] Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy Sciences, 1962. 102(1):29-45. doi10.1111/j.1749-6632.1962.tb13623.x.
  • [2] Zhou Y, Zhang Y, Pan F. A competitive immunochromatographic assay based on a novel probe for the detection of mercury (II) ions in water samples. Biosensors and Bioelectronics, 2010. 25(11):2534-2538. doi10.1016/j.bios.2010.04.003.
  • [3] Ghosh S, Priyam A, Bhattacharya SC. Mechanistic aspects of quantum dot based probing of Cu(II) ions: role of dendrimer in sensor efficiency. Journal of Fluorescence. 2009; 19(4):723-731. doi:10.1007/s10895-009-0468-9.
  • [4] Swearingen CB, Wernette DP, Cropek DM, Lu Y, Sweedler JV, Bohn PW. Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. Analytical Chemistry, 2005. 77(2):442-448. doi10.1021/ac0401016.
  • [5] Yoshitsugu A, Qian M, Erin E, Andrei L, Hecht SM. Identification of strong dna binding motifs for bleomycin. Journal of the American Chemical Society, 2008. 130(30):9650. doi10.1021/ja802905g.
  • [6] Raz SR, Bremer MG, Giesbers M, Norde W. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance. Biosensors Bioelectronics, 2008. 24(4):552-557. doi10.1016/j.bios.2008.05.010.
  • [7] Soh N, Ueda T. Perylene bisimide as a versatile fluorescent tool for environmental and biological analysis: a review. Talanta, 2011. 85(3):1233-1237. doi10.1016/j.talanta.2011.06.010.
  • [8] Sassolas A, Blum LJ, Lecabouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 2012. 30(3):489-511. doi10.1016/j.biotechadv.2011.09.003.
  • [9] Ceylan KH, Klah H, Ozgen C, Alp A, Hascelik G. Mems biosensors for detection of methicillin resistant staphylococcus aureus. Biosensors Bioelectronics, 2011. 29(1):1-12. doi10.1016/j.bios.2011.07.071.
  • [10] Chobtang J, Boer IJMD, Hoogenboom RLAP, Haasnoot W, Kijlstra A, Meerburg BG. The need and potential of biosensors to detect dioxins and dioxin-like polychlorinated biphenyls along the milk, eggs and meat food chain. Sensors, 2011. 11(12):11692-716. doi10.3390/s111211692.
  • [11] Dantham VR, Holler S, Kolchenko V, Wan Z, Arnold S. Taking whispering gallery-mode single virus detection and sizing to the limit. Applied Physics Letters, 2012. 101)(4):1379. doi10.1063/1.4739473.
  • [12] Yang J, Dong C, Dong YF, Liu S, Pan LQ, Zhang C. Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Applied Materials and Interfaces, 2014. 6(16):14486-14492. doi:10.1021/am5036994.
  • [13] Pan LQ, Wang ZY, Li YF, Xu F, Zhang Q, Zhang C. Nicking enzyme-controlled toehold regulation for DNA logic circuits. Nanoscale, 2017. 9:18223-18228. doi:10.1039/C7NR06484E.
  • [14] Wu TF, Paun A, Zhang ZQ, Pan LQ. Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 2017. 99:1-12. doi:10.1109/TNNLS.2017.2726119.
  • [15] Yang J, Jiang SX, Liu XR, Pan LQ, Zhang C. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates. ACS Applied Materials and Interfaces, 2016. 8(49):34054-34060. doi10.1021/acsami.6b10266.
  • [16] Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, RGF, et al. Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir, 1996. 12(10):2353-2361. doi10.1021/la950561h.
  • [17] Baker BE, Kline NJ, Treado PJ, Natan MJ. Solution-based assembly of metal surfaces by combinatorial methods. Journal of the American Chemical Society, 1996. 118(36):8721-8722. doi10.1021/ja961327w.
  • [18] Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M. Lna (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron, 1998. 54(14):3607-3630. doi10.1016/S0040-4020(98)00094-5.
  • [19] Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP. Self-assembled metal colloid monolayers: an approach to sers substrates. Science, 1995. 267(5204):1629-1632. doi10.1126/science.267.5204.1629.
  • [20] Lyon LA, Musick MD, Smith PC, Reiss BD, Pena DJ, Natan MJ. Surface plasmon resonance of colloidal au-modified gold films. Sensors Actuators B Chemical, 1999. 54(1C2):118-124. doi10.1016/S0925-4005(98)00329-3.
  • [21] Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A dna-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996. 382(6592):607-609. doi10.1038/382607a0.
  • [22] Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997. 277(5329):1078-1081. doi10.1126/science.277.5329.1078.
  • [23] Storhoff JJ, Elghanian R, Mucic RC, And CAM, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998. 120(9):1959-1964. doi10.1021/ja972332i.
  • [24] Dykman LA, Lyakhov AA, Bogatyrev VA. Synthesis of colloidal gold using high-molecular-weight reducing agents. Colloid Journal of the Russian Academy of Sciences, 1998. 60(6):700-704. doi10.1061-933X/98/6006.
  • [25] Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical Chemistry, 2015. 87(1):230. doi10.1021/ac5039863.
  • [26] Shi H, Zhang L, Cai W. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica. Materials Research Bulletin, 2000.35(10):1689-1695. doi10.1016/S0025-5408(00)00360-3.
  • [27] Mandal S, Phadtare S, Sastry M. Interfacing biology with nanoparticles. Current Applied Physics, 2005. 5(2):118-127. doi10.1016/j.cap.2004.06.006.
  • [28] Lu N, Gao A, Zhou H, Wang Y, Yang X, Wang Y. Progress in Silicon Nanowire-Based Field-Effect Transistor Biosensors for Label-Free Detection of DNA. Chinese Journal of Chemistry, 2016. 34(3):308C-316. doi10.1002/cjoc.201500857.
  • [29] Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, Tobin AB.-arrestin biosensors reveal a rapid, receptor dependent activation/deactivation cycle. Nature, 2016. 531(7596):661. doi10.1038/nature17198.
  • [30] Nam JM, And SIS, Mirkin CA. Bio-bar-code-based dna detection with pcr-like sensitivity. Journal of the American Chemical Society, 2004. 126(19):5932-5933. doi10.1021/ja049384+.
  • [31] Singh RP, Oh BK, Choi JW. Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry, 2010. 79(2):153-161. doi10.1016/j.bioelechem.2010.02.004.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8adefd7c-fb80-4f8d-a986-9c01719f89d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.