PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis of modular high-temperature nuclear reactor coupled with the steam cycle for power generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Consumption of energy is one of the important indicators in developing countries, but a lot of companies from the energy sector have to cope with three key challenges, namely how to reduce their impact on the environment, how to ensure the low cost of the energy production and how to improve the system overall performance? For Polish energy market, the number of challenges is greater. The growing demand for electricity and contemporary development of nuclear power technology allow today’s design, implement new solutions for high energy conversion system low unit cost for energy and fuel production. In the present paper, numerical analysis of modular high-temperature nuclear reactor coupled with the steam cycle for electricity production has been presented. The analysed system consists of three independent cycles. The first two are high-temperature nuclear reactor cycles which are equipped with two high-temperature nuclear reactors, heat exchangers, blowers, steam generators. The third cycle is a Rankine cycle which is equipped with up to four steam turbines, that operate in the heat recovery system. The analysis of such a system shows that is possible to achieve significantly greater efficiency than offered by traditional nuclear reactor technology.
Rocznik
Strony
49--66
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Fundamental Research in Energy Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Fundamental Research in Energy Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Fundamental Research in Energy Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] World Energy Council, World Energy Resources 2016.
  • [2] Jaskólski M., Reński A., Minkiewicz T.: Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat. Energy 141(2017), 2470–2483.
  • [3] Majumdar D.: Desalination and other non-electric applications of nuclear energy. In Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety, Trieste, February 2002.
  • [4] Mitenkov F.M., Kusmartsev E.V.: Nuclear Heat Applications in Russia: experience, status and prospects. IAEA-TECDOC 1056, 1998.
  • [5] Nuclear Energy Agency On the role and economics of nuclear cogeneration in a low carbon energy future. OECD, NEA, 6887, 2012.
  • [6] Shin Y., Lee T., Lee K., Kim M.: Modeling and simulation of HI and H2 SO4 thermal decomposers for a 50NL/h sulfur-iodine hydrogen production test facility. Appl. Energy 173(2016), C, 460–469.
  • [7] Stanek W., Szargut J., Kolenda Z., Czarnowska L.: Exergo-ecological and economic evaluation of a nuclear power plant within the whole life cycle. Energy 117(2016), 369–377.
  • [8] Khan S.U.D., Khan S.U.D.: Karachi Nuclear Power Plant (KANUPP): As case study for techno-economic assessment of nuclear power coupled with water desalination. Energy 127(2017), 372–380.
  • [9] Sayyaadi H.: A conceptual design of a dual hydrogen-power generation plant based on the integration of the gas-turbine cycle and copper chlorine thermochemical plant. Int. J. Hydrog. Energy 42(2017), 48, 28690–28709.
  • [10] Je¸drzejewski J., Hanuszkiewicz-Drapala M.: Analyses of the efficiency of a high temperature gas-cooled nuclear reactor (HTGR) generating heat for the sulphuriodine cycle. J. Energ Rresour-ASME 140(2018), 11, 112001–112011.
  • [11] Stanek W., Szargut J., Kolenda Z., Czarnowska L.: Influence of nuclear power unit on decreasing emissions of greenhouse gases. Arch. Thermodyn. 36(2015), 1, 55–65.
  • [12] Grodzki M., Darnowski P., Niewiński G.: Monte Carlo analysis of the batterytype high temperature gas cooled reactor. Arch. Thermodyn. 38(2017), 4, 209–227.
  • [13] Al-Zareer M., Dincer I., Rosen M.A.: Development and assessment of a novel integrated nuclear plant for electricity and hydrogen production. Energy Convers. Manag. 134(2017), 221–234.
  • [14] Santini L., Accornero C., Cioncolini A.: On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant. Appl. Energy 181(2016), 446-463.
  • [15] Liu Z., Karimi I.A.:New operating strategy for a combined cycle gas turbine power plant. Energy Convers. Manag. 171(2018), 1675–1684.
  • [16] International Atomic Energy Agency, Power Reactor Information System International Atomic Energy Agency (IAEA) 2015.
  • [17] Dudek M., Jaszczur M.: An analysis of the thermodynamic cycles with hightemperature nuclear reactor for power generation and hydrogen co-production. E3S Web of Conf. 14(2017), 01046, 1–12.
  • [18] Jezierski G.: Energetyka j¸adrowa a konwencjonalna. Energetyka Cieplna i Zawodowa 10(2009), 11–17 (in Polish).
  • [19] Wang C., Yan C., Wang J., Tian C., Yu, S.: Parametric optimization of steam cycle in PWR nuclear power plant using improved genetic-simplex algorithm. Appl. Therm. Eng. 125(2017), 830–845.
  • [20] Sarr J.A.R., Mathieu-Potvin F.: Increasing thermal efficiency of Rankine cycles by using refrigeration cycles: A theoretical analysis. Energy Convers. Manag. 121(2016), 358–379.
  • [21] Manual of Ebsilon Profesional software, STEAG GmbH 2017.
  • [22] Zhang Z., Dong Y., Li F., Zhang Z., Wang H., Huang X., Li H., Liu B., Wu X., Wang H., Diao X., Zhang H., Wang J.: The Shandong Shidao Bay 200 MW a high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: An engineering and technological innovation. Engineering 2(2016), 1, 112–118.
  • [23] Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho LLC, Next Generation Nuclear Plant Research and Development Program Plan, INEEL/EXT-05-02581, 2005.
  • [24] Mylavarapu S.K., Sun X., Glosup R.E., Christensen R.N., Patterson M.W.: Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility. Appl. Therm. Eng. 65(2014), 1, 605–614.
  • [25] Fic A., Składzień J., Gabriel M.: Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle. Arch. Thermodyn. 36(2015), 1, 3–18.
  • [26] Alobaid F., Mertens N., Starkloff R., Lanz T., Heinze C., Epple B.: Progress in dynamic simulation of thermal power plants. Prog. Energy Combust. Sci. 59(2017), 79–162.
  • [27] Dudek M., Podsadna J., Jaszczur M.: An numerical analysis of hightemperature helium reactor power plant for co-production of hydrogen and electricity. J. Phys. Conf. Ser. 745(2016), 032009, 032009-1-032009-8.
  • [28] Jaszczur M., Dudek M., Kolenda Z.: Thermodynamic analysis of high temperature nuclear reactor coupled with advanced gas turbine combined cycle. Thermal Sci. 4(2019), 4, 1187–1197.
  • [29] Jaszczur M., Dudek M.: Thermodynamic analysis of a gas turbine combined cycle integration with a high-temperature nuclear reactor. E3S Web Conf. 113(2019), 02019, 1–6.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8adce3d4-bd4a-48e4-a946-34964801b6a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.