PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the fuel consumption by a HEV vehicle - a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a mathematical model demonstrating the synergy of HEV energetic machines in accordance with the model predictive control. Then the results of road tests are presented. They were based on the factory control of the above-mentioned system. The results of the operating parameters of the system according to the factory control and the results of the operating parameters according to the model predictive control were compared. On their basis, it could be concluded that the model predictive control contributed to changes in the power and electrochemical charge level of the energy storage system from 50.1% (the beginning) to 56.1% (the end of course) and for MPC from 50.1% (the beginning) to 59.9% (the end of the course). The applied MPC with 13 reference trajectories (LQT) of power machines of the series-parallel HEV allowed for fuel savings on the level of 4%.
Czasopismo
Rocznik
Strony
71--83
Opis fizyczny
Bibliogr. 38 poz., il. kolor., wykr.
Twórcy
  • Faculty of Mechanical Engineering, West Pomeranian University of Technology in Szczecin, Poland
  • Faculty of Mechanical Engineering, West Pomeranian University of Technology in Szczecin, Poland
  • Faculty of Mechanical Engineering, West Pomeranian University of Technology in Szczecin, Poland
  • Faculty of Mechanical Engineering, West Pomeranian University of Technology in Szczecin, Poland
  • Command of Territorial Defense Forces, Poland
Bibliografia
  • [1] Abido MA. Optimal power flow using particle swarm optimization. Int J Elec Power. 2002;24:563-571. https://doi.org/10.1016/S0142-0615(01)00067-9
  • [2] Back M. Pradikitive Antriebregulung zum Energieoptimalen Betrieb von Hybridfahrzeugen. 2004. Dissertation, Univ. Karlsruhe.
  • [3] Barsali S, Miulli C, Possenti A. A control strategy to minimalize fuel consumption of series hybrid electric vehicles. IEEE Trans Veh Technol. 2004;19(1):187-195. https://doi.org/10.1109/TEC.2003.821862
  • [4] Bieniek A, Graba M, Mamala J, Prażnowski K, Hennek K. Energy consumption of a passenger car with a hybrid powertrain in real traffic conditions. Combustion Engines. 2022;191(4):15-22. https://doi.org/10.19206/CE-142555
  • [5] Borhan HA, Vahidi A. Model predictive control of a power-split hybrid electric vehicle with combined battery and ultra-capacitor energy storage. Proceedings of the 2010 American Control Conference. 2010:5031-5036. https://doi.org/10.1109/ACC.2010.5530728
  • [6] Cao J, Peng J, He H. Modeling and simulation research on power-split hybrid electric vehicle. Energy Proced. 2016;104:354-359. https://doi.org/10.1016/j.egypro.2016.12.060
  • [7] Chen S-Y, Hung Y-H, Wu C-H, Huang S-T. Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization. Appl Energy. 2015;160:132-145. https://doi.org/10.1016/j.apenergy.2015.09.047
  • [8] Chen Z, Xiong R, Cao J. Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions. Energy. 2016; (96):197-208. https://doi.org/10.1016/j.energy.2015.12.071
  • [9] Chen Z, Xiong R, Wang K, Jiao B. Optimal energy management strategy of a plug-in hybrid electric vehicle based on a particle swarm optimization algorithm. Energies. 2015;8:3661-3678. https://doi.org/10.3390/en8053661
  • [10] Delprat S, Lauber J, Guerra TM, Rimaux J. Control of a parallel hybrid powertrain: optimal control. IEEE Trans Veh Technol. 2004;53(3):872-881. https://doi.org/10.1109/tvt.2004.827161
  • [11] Gao J, Zhu G, Strangas E, Sun F. Equivalent fuel consumption optimal control of a series hybrid electric vehicle. P I Mech Eng D-J Aut. 2009;23:1003-1018. https://doi.org/10.1243/09544070JAUTO107
  • [12] Golebiewski W, Lisowski M. Theoretical analysis of electric vehicle energy consumption according to different driving cycles. IOP Conf Ser Mater Sci Eng. 2018;421:022010. https://doi.org/10.1088/1757-899X/421/2/022010
  • [13] Grudzinski P. Toyota Hybrid Drive System. Toyota Motor Poland. 2022.
  • [14] Guzzella L, Sciarretta A. Vehicle Propulsion Systems. Introduction to Modeling and Optimalization. Berlin: Springer-Verlag. 2005, 190.
  • [15] Hwang H-Y, Chen J-S. Optimized fuel economy control of power - split hybrid electric vehicle with particle swarm optimization. Energies. 2020;13:2278. https://doi.org/10.3390/en13092278
  • [16] Kim TS, Manzie C, Sharma R. Model predictive control of velocity and torque split in a parallel hybrid vehicle. IEEE Sys Man Cyber. 2009:2014-2019.
  • [17] Kleimaier A, Schroder D. An approach for the online optimized control of a hybrid powertrain. 7th International Workshop on Advanced Motion Control. 2002:215-220. https://doi.org/10.1109/AMC.2002.1026919
  • [18] Lin CC, Peng H, Grizzle JW, Kang J-M. Power management strategy for a parallel hybrid electric truck. IEEE T Contr Syst T. 2003;11(6):839-849. https://doi.org/10.1109/TCST.2003.815606
  • [19] Lin CC, Peng H, Grizzle JW. A stochastic control strategy for hybrid electric vehicles. P Amer Contr Conf. 2004; (5):4710-4715. https://doi.org/10.23919/ACC.2004.1384056
  • [20] Liu J, Peng H. Modeling and control of a power-split hybrid vehicle. IEEE T Contr Syst T. 2008;16(6):1242-1251. https://doi.org/10.1109/TCST.2008.919447
  • [21] Liu J, Peng H. Automated modelling of a power-split hybrid vehicles. IFAC P Vol. 2008;41(2):4648-4653. https://doi.org/10.3182/20080706-5-KR-1001.00782
  • [22] Merkisz J, Pielecha I. Uklady mechaniczne pojazdow hybrydowych. Wydawnictwo Politechniki Poznanskiej. Poznan 2015.
  • [23] Moura SJ, Fathy HK, Callaway DS, Stein JL. A stochastic optimal control approach for power management in plug-in hybrid electric vehicles. IEEE T Veh Technol. 2011;19: 545-555. https://doi.org/10.1109/TCST.2010.2043736
  • [24] Musado C, Rizzoni G, Guezennec Y, Staccia B. A ECMS: an adaptive algorithm for hybrid electric vehicle energy management. Eur J Control. 2005;11(4-5):509-524. https://doi.org/10.3166/ejc.11.509-524
  • [25] Paganelli G, Delprat S, Guerra T, Rimaux J, Santin J. Equivalent consumption minimization strategy for parallel hybrid powertrains. IEEE Vehicular Technology Conference. 2002;4:2076-2081. https://doi.org/10.1109/VTC.2002.1002989
  • [26] Paganelli G, Guezennec Y, Rizzoni G. Optimizing control strategy for hybrid fuel cell vehicle. SAE Technical Paper 2002-01-0102, 2002. https://doi.org/10.4271/2002-01-0102
  • [27] Pielecha I, Cieślik W, Fluder K. Analysis of energy management strategies for hybrid electric vehicles in urban driving conditions. Combustion Engines. 2018;173(2):14-18. https://doi.org/10.19206/CE-2018-203
  • [28] Prajwowski K, Golebiewski W, Lisowski M, Abramek KF, Galdynski D. Modeling of working machines synergy in the process of the hybrid electric vehicle acceleration. Energies. 2020;13:5818. https://doi.org/10.3390/en13215818
  • [29] Prajwowski K, Golebiewski W, Lisowski M, Eliasz J. Road tests of selected electrical parameters of hybrid vehicle accumulation system. IEEE Trans Veh Technol. 2021;70(1): 203-211. https://doi.org/10.1109/TVT.2020.3043852
  • [30] Sciarretta A, Back M, Guzzella L. Optimal control of parallel hybrid electric vehicles. IEEE T Contr Syst T. 2004; 12(3):352-363. https://doi.org/10.1109/TCST.2004.824312
  • [31] Shi DH, Wang SH, Pisu P, Chen L, Wang RC, Wang RG. Modeling and optimal energy management of a power split hybrid electric vehicle. Sci China Technol Sc. 2017;60:713-725. https://doi.org/10.1007/s11431-016-0452-8
  • [32] Tang X, Chen J, Liu T, Qin Y, Cao D. Distributed deep reinforcement learning-based energy and emission management strategy for hybrid electric vehicles. IEEE T Veh Technol. 2021;70(10):9922-9934. https://doi.org/10.1109/TVT.2021.3107734
  • [33] Wu X, Cao B, Wen J, Bian Y. Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter. 2008 IEEE Vehicle Power. 2008:1-5. https://doi.org/10.1109/VPPC.2008.4677635
  • [34] Yang J, Zhu G. Adaptive recursive prediction of the desired torque of hybrid powertrain. IEEE T Veh Technol. 2015; 64(8):3402-3413. https://doi.org/10.1109/tvt.2014.2357395
  • [35] Yang J, Zhu G. Model predictive control of a power split hybrid powertrain. Amer Contr Conf. 2016:617-622. https://doi.org/10.1109/ACC.2016.7524982
  • [36] Yu K, Yang J, Yamaguchi D. Model predictive control for hybrid vehicle ecological driving using traffic signal and road slop information. Control Theory Technol. 2015; 13(1):17-28. https://doi.org/10.1007/s11768-015-4058-x
  • [37] Zhu Y, Chen Y, Tian G, Wu H, Chen Q. A four-step method to design an energy management strategy for hybrid vehicles. P Amer Contr Conf. 2004;1:156-161. https://doi.org/10.23919/ACC.2004.1383596
  • [38] Zhu D, Pritchard E, Dadam SR, Kumar V, Xu Y. Optimization of rule-based energy management strategies for hybrid vehicles using dynamic programming. Combustion Engines. 2021;184(1):3-10. https://doi.org/10.19206/CE-131967
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ad9236a-1e75-4a95-962f-7ea007271932
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.