PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Entropy generation in a condenser and related correlations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of relations describing entropy generation in a condenser of a steam unit. Connections between entropy generation, condenser ratio, and heat exchanger effectiveness, as well as relations implied by them are shown. Theoretical considerations allowed to determine limits of individual parameters which describe the condenser operation. Various relations for average temperature of the cold fluid were compared. All the proposed relations were verified against data obtained using a simulator and actual measurement data from a 200 MW unit condenser. Based on data from a simulator it was examined how the sum of entropy rates, steam condenser effectiveness, terminal temperature difference and condenser ratio vary with the change in the inlet cooling water temperature, mass flow rate of steam and the cooling water mass flow rate.
Rocznik
Strony
27--48
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wz.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] LAUDYN D., PAWLIK M., STRZELCZYK F. Power Plants. WNT, Warsaw 1995 (in Polish).
  • [2] NEHREBECKI L.: Heat Power Plants. WNT, Warsaw 1974 (in Polish).
  • [3] RUSOWICZ A.: Issues Concerning Mathematical Modelling of Power Condensers. Warsaw University of Technology, Warsaw 2013 (in Polish).
  • [4] SMYK A.: Influence of the Parameters in Nuclear CHP for Fuel Savings in Fuel – Energy System. Ph.D. thesis, Warsaw University of Technology, Warsaw 1999 (in Polish).
  • [5] SALIJ A.: The Impact of the Quality and Reliability of the Turbine Condensers to Work the Power Unit. Ph.D. thesis, Warsaw University of Technology, Warsaw 2011 (in Polish).
  • [6] KOSTOWSKI E.: Heat Transfer. WPŚ, Gliwice 2000, (in Polish).
  • [7] WIŚNIEWSKI S., WIŚNIEWSKI T.S.: Heat Transfer. WNT, Warsaw 2012 (in Polish).
  • [8] CENGEL Y.A.: Heat and Mass Transfer. McGraw-Hill 2007.
  • [9] HOLMAN J.P.: Heat Transfer, 9th Edn. McGraw-Hill, New York 2002.
  • [10] OCHĘDUSZKO S.: Applied Thermodynamics. WNT, Warsaw 1970 (in Polish).
  • [11] ZBROIŃSKA-SZCZECHURA E., DOBOSIEWICZ J.: Heat and material diagnostics of steam condensers. Energetyka 3(2000), 122–124 (in Polish).
  • [12] RUSINOWSKI H., PLIS M., MILEJSKI A.: Application of data reconciliation for diagnostics of heat exchangers. Rynek Energii 5(108)/2013, 57–62 (in Polish).
  • [13] LASKOWSKI R., SMYK A.: Analysis of the working conditions of a steam condenser using measurements and an approximation model. Rynek Energii 110(2014), 1 (in Polish).
  • [14] BUTRYMOWICZ D., TRELA M.: Influence of fouling and inert gases on the performance of regenerative feedwater heaters . Arch. Thermodyn. 23(2002), 1–2, 127–140.
  • [15] KRZYŻANOWSKI J.A., GŁUCH J.: Thermo-Flow Diagnostics of Power Plants. IMP PAN, Gdańsk 2004 (in Polish).
  • [16] DROZYNSKI Z.: Phenomenological model of steam condensation containing noncondensable gases on a single non-inundated tube. Arch. Thermodyn. 27(2006), 4, 67–78.
  • [17] CHMIELNIAK T., TRELA M.: Diagnostics of New-Generation Thermal Power Plants, IMP PAN Publishers, Gdańsk 2008.
  • [18] CHMIELNIAK T., LEWANDOWSKI J.: Analysis of the possibility to reduce the imperfections of the thermodynamic processes of the supply of electricity, heat and cooling in the context of sustainable development of the country. Opportunities to improve imperfections thermodynamic processes in the electricity supply. (A. Ziębik, J. Szargut, W. Stanek, Eds.), Wyd. PAN 2006 (in Polish).
  • [19] SZARGUT J.: Thermodynamics. PWN, Warsaw 2000 (in Polish).
  • [20] CHEN J.: Comments on improvements on a replacement for the logarithmic mean. Chem. Eng. Sci. 42(1987), 2488–2489.
  • [21] CENGEL Y.A., BOLES M.A.: Thermodynamics. McGraw-Hill, 2002.
  • [22] STANISZEWSKI B.: Heat Transfer. PWN, Warsaw 1979 (in Polish).
  • [23] STANISZEWSKI B.: Thermodynamics. PWN, Warsaw 1978 (in Polish).
  • [24] OGULATA R.T., DOBA F.: Experiments and entropy generation minimization analysis of a cross-flow heat exchanger. Int. J. Heat Mass Trans. 41(1998), 2, 373–381.
  • [25] GUPTA A., SARIT K. Das: Second law analysis of crossflow heat exchanger in the presence of axial dispersion in one fluid. Energy 32(2007), 664–672.
  • [26] YILMAZ M., SARA O.N., KARSLI S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int. J. 4(2001), 1, 278–294.
  • [27] SAHITI N., KRASNIQI F., FEJZULLAHU XH., BUNJAKU J., MURIQI A.: Entropy generation minimization of a double-pipe pin fin heat exchanger. Appl. Therm. Eng. 28(2008), 2337–2344.
  • [28] GUO J., CHENG L., XU M.: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl. Therm. Eng. 29(2009), 2954–2960.
  • [29] PATERSON W.R.: A replacement for the logarithmic mean. Chem. Eng. Sci. 39(1984), 1635–1636.
  • [30] SAMUEL J.M. CARTAXO, FABIANO A.N. Fernandes: Counterflow logarithmic mean temperature difference is actually the upper bound: A demonstration. Appl. Therm. Eng. 31(2011), 1172–1175.
  • [31] GRZEBIELEC A., RUSOWICZ A.: Thermal Resistance of Steam Condensation in Horizontal Tube Bundles. J. Power Technol. 91(2011), 1, 41–48.
  • [32] RUSOWICZ A., GRZEBIELEC A.: The numerical modeling of a church window power plant condenser. Rynek Energii 109(2013), 6, 137–141.
  • [33] SZEGA M.: Application of Data Reconciliation Method for Increase of Measurements Reliability in the Power Unit System of a Steam Power Plant. Monograph No. 193, Silesian University of Technology Publisher, Gliwice 2009 (in Polish).
  • [34] SZEGA M.: Application of the entropy information for the optimization of an additional measurements location in thermal systems. Arch. Thermodyn. 32(2011), 3, 215–229.
  • [35] CHMIELNIAK T.: Energy Technologies. WNT, Warsaw 2008 (in Polish).
  • [36] GARDZILEWICZ A., Marcinkowski S., Sobera H., Banasiewicz J.: Pressure measurement in steam turbine condensers. Energetyka 10/11(2002), 743–751 (in Polish).
  • [37] DROŻYŃSKI Z.: Entropy increase as a measure of energy degradation in heat transfer. Arch. Thermodyn. 34(2013), 3, 147–160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ad349e4-ce10-451b-8052-168ac8b73178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.