PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep drawing and redrawing of solution-treated Cu-Cr-Zr-Ti alloy sheets and post-forming characterization of the redrawn cup wall

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, space research organizations are interested in investigating multistage deep drawing of Cu-Cr-Zr-Ti alloy sheets for the fabrication of large-depth thrust chamber liners used in cryogenic engine of satellite launch vehicles. Hence, an attempt was made for the first time to design and develop a laboratory scale two-stage deep drawing setup to successfully draw cylindrical cups of solution-treated Cu-0.5Cr-0.05Zr-0.05Ti (wt. %) sheets of 1.7 mm thickness. The finite element (FE) model with Marciniak–Kuczynski forming limit diagram (MK-FLD) was implemented to design the above two-stage deep drawing setup, and two different anisotropic models, namely Hill48 and Barlat89, along with solid and shell element formulations were used to capture the deformation behavior. After setup design, the two-stage deep drawing experiments were conducted, and successful redrawn cups with overall drawing ratio of 2.94 with maximum cup depth of 58.5 mm was achieved. The strain evolution during deformation was analyzed in polar effective plastic strain (PEPS) locus, and it was also observed that the surface roughness of cup wall and corner was significantly increased to 2.73 μm and 3.16 μm, respectively, due to accumulation of plastic strain and evolution of texture. Further, the orientation gradient inside the grains at both cup wall and corner regions was observed, and evolution of Copper {112} < 111> and Y{111} <112> texture components were identified in the cup wall. However, the marginal increase in roughness of cup corner as compared to that of the cup wall might be due to the development of Brass {110} < 112 > texture. Finally, the aging behavior of redrawn cup wall was analyzed, and it was found that the peak aging occurred at 500 °C for 2 h. with a hardness of 98 ± 4 VHN due to the formation of fine Cr-rich precipitates.
Rocznik
Strony
art. no. e217, 2023
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
autor
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Vikram Sarabhai Space Centre, Indian Space Research Organisation, Thiruvanathapuram, Kerala 695022, India
Bibliografia
  • 1. Murty SVSN, Manwatkar S, George M, Narayanan PR. Microstructural analysis of a failed Cu-Cr-Ti-Zr thrust chamber liner of a cryogenic engine. Mater Perform Charact. 2016;5:648–63. https://doi.org/10.1520/MPC20160050.
  • 2. Sarkar A, Prasad MJNV, Murty SVSN. Effect of initial grain size on hot deformation behaviour of Cu-Cr-Zr-Ti alloy. Mater Charact. 2020;160:110112. https://doi.org/10.1016/j.matchar.2019. 110112.
  • 3. Krishna SC, Rao GS, Jha AK, Pant B, Venkitakrishnan PV. Strengthening in high strength Cu-Cr-Zr-Ti alloy plates produced by hot rolling. Mater Sci Eng A. 2016;674:164–70. https://doi. org/10.1016/j.msea.2016.07.063.
  • 4. Saravanan K, Sharma VMJ, Asraff AK, Ramesh Narayanan P, Sharma SC, George KM. Studies on dynamic elastic and internal friction properties of Cu-Cr-Zr-Ti alloy between 25 and 650 °C. J Mater Eng Perform. 2015;24:4721–7. https://doi.org/10.1007/ s11665-015-1778-5.
  • 5. Krishna SC, Radhika KV, Tharian KT, Kiranmayee MS, Rao GS, Jha AK, Pant B. Dynamic embrittlement in Cu-Cr-Zr- Ti alloy: evidence of intergranular segregation of sulphur. J Mater Eng Perform. 2013;22:2331–6. https://doi.org/10.1007/ s11665-013-0510-6.
  • 6. Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc London Ser A Math Phys Sci. 1948;193:281– 97. https://doi.org/10.1098/rspa.1948.0045.
  • 7. Barlat F, Lian K. Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast. 1989;5:51–66. https://doi.org/10. 1016/0749-6419(89)90019-3.
  • 8. Marciniak Z, Kuczynski K. Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci. 1967;9:609–20. https://doi.org/10.1016/0020-7403(67)90066-5.
  • 9. Shen F, Munstermann S, Lian J. Forming limit prediction by the Marciniak-Kuczynski model coupled with the evolving non-associated Hill48 plasticity model. J Mater Process Technol. 2021;287:116384. https:// doi. org/ 10. 1016/j. jmatp rotec. 2019. 116384.
  • 10. Dasappa P, Inal K, Mishra R. The effects of anisotropic yield functions and their material parameters on prediction of forming limit diagrams. Int J Solids Struct. 2012;49:3528–50. https:// doi.org/10.1016/j.ijsolstr.2012.04.021.
  • 11. Basak S, Panda SK, Lee MG. Formability and fracture in deep drawing sheet metals: extended studies for pre-strained anisotropic thin sheets. Int J Mech Sci. 2020;170:105346. https://doi. org/10.1016/j.ijmecsci.2019.105346.
  • 12. Kotkunde N, Krishna G, Shenoy SK, Gupta AK, Singh SK. Experimental and theoretical investigation of forming limit diagram for Ti-6Al-4 V alloy at warm condition. Int J Mater Form. 2017;10:255–66. https://doi.org/10.1007/s12289-015-1274-3.
  • 13. Prasad KS, Panda SK, Kar SK, Murty SVSN, Sharma SC. Effect of solution treatment on deep drawability of IN718 sheets: Experimental analysis and metallurgical characterization. Mater Sci Eng A. 2018;727:97–112. https:// doi. org/ 10. 1016/j. msea. 2018.04.110.
  • 14. Li SY, Zhang XM. Texture evolution during deep drawing of copper sheet. Scr Mater. 1997;36:1023–9. https://doi.org/10.1016/ S1359-6462(96)00473-3.
  • 15. Rossiter J, Brahme A, Inal K, Mishra R. Numerical analyses of surface roughness during bending of FCC single crystals and polycrystals. Int J Plast. 2013;46:82–93. https://doi.org/10.1016/j. ijplas.2013.01.016.
  • 16. Mahmudi R, Mehdizadeh M. Surface roughening during uniaxial and equi-biaxial stretching of 70–30 brass sheets. J Mater Process Technol. 1998;80–81:707–12. https:// doi. org/ 10. 1016/ S0924- 0136(98)00099-5.
  • 17. Fu S, Liu P, Chen X, Zhou H, Ma F, Li W, Zhang K. Effect of aging process on the microstructure and properties of Cu–Cr– Ti alloy. Mater Sci Eng A. 2021;802:140598. https://doi.org/10. 1016/j.msea.2020.140598.
  • 18. Krishna SC, Rao GS, Jha AK, Pant B, George KM. Analysis of phases and their role in strengthening of Cu-Cr-Zr-Ti alloy. J Mater Eng Perform. 2015;24:2341–5. https://doi.org/10.1007/ s11665-015-1516-z.
  • 19. Kumar RR, Singh A, Pande AK, Tripathy D, Amruth M, Tharian T, Venkitakrishnan PV. Study on orange peel phenomena in Cu-Cr-Zr-Ti alloy thrust chamber. Mater Sci Forum. 2015;830– 831:362–6. https://doi.org/10.4028/www.scientific.net/MSF.830- 831.362.
  • 20. ASTM G1–03: (2011) Standard practice for preparing, cleaning, and evaluating corrosion test specimens. ASTM Int. https://doi. org/10.1520/G0001-03R17E01.
  • 21. Amelirad O, Assempour A. Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets. J Manuf Process. 2019;47:310–23. https://doi.org/10. 1016/j.jmapro.2019.09.035.
  • 22. ASTM E3–11: Standard guide for preparation of metallographic specimens, ASTM Int. (2011). https://doi.org/10.1520/ E0003-11R17.
  • 23. ASTM E8/E8M: Standard test methods for tension testing of metallic materials 1, Annu. B. ASTM Stand (2010). https://doi. org/10.1520/E0008.
  • 24. ASTM E517–19. Standard test method for plastic strain ratio r for sheet metal. ASTM Int. 2019. https://doi.org/10.1520/E0517-19.
  • 25. Butuc MC, Gracio JJ, Barata da Rocha A. A theoretical study on forming limit diagrams prediction. J Mater Process Technol. 2003;142:714–24. https://doi.org/10.1016/S0924-0136(03) 00813-6.
  • 26. I. Suchy, Handbook of Die Design, 2nd ed., McGraw-Hill professional, 2005.
  • 27. Qi WX, Tu JP, Liu F, Yang YZ, Wang NY, Lu HM, Zhang XB, Guo SY, Liu MS. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy. Mater Sci Eng A. 2003;343:89–96. https://doi.org/10.1016/S0921-5093(02)00387-8.
  • 28. Katiyar BS, Panda SK, Saha P. Quasi-static crushing behavior of stretch formed domes of laser welded tailored blanks. Thin-Walled Struct. 2021;159:107288. https://doi.org/10.1016/j.tws. 2020.107288.
  • 29. Younas N, Chalal H, Abed-Meraim F. Finite element simulation of sheet metal forming processes using non-quadratic anisotropic plasticity models and solid-shell finite elements. Procedia Manuf. 2020;47:1416–23. https://doi.org/10.1016/j.promfg.2020.04.302.
  • 30. Kaiping L, Habraken AM, Bruneel H. Simulation of square-cup deep-drawing with different finite elements. J Mater Process Tech. 1995;50:81–91. https://doi.org/10.1016/0924-0136(94)01371-7.
  • 31. Neto DM, Oliveira MC, Dick RE, Barros PD, Alves JL, Menezes LF. Numerical and experimental analysis of wrinkling during the cup drawing of an AA5042 aluminium alloy. Int J Mater Form. 2017;10:125–38. https://doi.org/10.1007/s12289-015-1265-4.
  • 32. Dieter GE. G. E. Dieter. Mechanical Metallurgy. 3rd ed., Mc Graw-Hill Book Co., New York 1986. XXIII + 751 p., DM 138.50, ISBN 0–07–016893–8. Cryst Res Technol. 1988;23:194. https://doi.org/10.1002/crat.2170230211.
  • 33. Stoughton TB, Yoon JW. Path independent forming limits in strain and stress spaces. Int J Solids Struct. 2012;49:3616–25. https:// doi.org/10.1016/j.ijsolstr.2012.08.004.
  • 34. Basak S, Panda SK. Necking and fracture limit analyses of different pre-strained sheet materials in polar effective plastic strain locus using Yld 2000–2d yield model. J Mater Process Technol. 2019;267:289–307. https://doi.org/10.1016/j.jmatprotec.2018.10. 004.
  • 35. Paul SK. Path independent limiting criteria in sheet metal forming. J Manuf Process. 2015;20:291–303. https://doi.org/10.1016/j. jmapro.2015.06.025.
  • 36. ASM Handbook: Forming and Forging, 9th ed., ASM International, 1988.
  • 37. Daniel D, Savoie J, Jonas JJ. Textures induced by tension and deep drawing in low carbon and extra low carbon steel sheets. Acta Metall Mater. 1993;41:1905–20. https://doi.org/10.1016/ 0956-7151(93)90210-J.
  • 38. Yoshida K, Ishizaka T, Kuroda M, Ikawa S. The effects of texture on formability of aluminum alloy sheets. Acta Mater. 2007;55:4499–506. https://doi.org/10.1016/j.actamat.2007.04. 014.
  • 39. Zhou Y, Jonas JJ, Savoie J, Makinde A, MacEwen SR. Effect of texture on earing in FCC metals: Finite element simulations. Int J Plast. 1998;14:117–38. https://doi.org/10.1016/S0749-6419(97) 00044-2.
  • 40. Raabe D, Sachtleber M, Weiland H, Scheele G, Zhao Z. Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 2003;51:1539–60. https://doi.org/10.1016/ S1359-6454(02)00557-8.
  • 41. Becker R. Effects of strain localization on surface roughening during sheet forming. Acta Mater. 1998;46:1385–401. https://doi. org/10.1016/S1359-6454(97)00182-1.
  • 42. Osakada K, Oyane M. On the roughening of free surface in deformation processes. Bull JSME. 1971;14:171–7. https://doi.org/10. 1299/jsme1958.14.171.
  • 43. Jung J, Yoon JI, Moon JH, Park HK, Kim HS. Effect of coarse precipitates on surface roughening of an FCC polycrystalline material using crystal plasticity. Comput Mater Sci. 2017;126:121–31. https://doi.org/10.1016/j.commatsci.2016.09.017.
  • 44. Batra IS, Dey GK, Kulkarni UD, Banerjee S. Microstructure and properties of a Cu–Cr–Zr alloy. J Nucl Mater. 2001;299:91–100. https://doi.org/10.1016/S0022-3115(01)00691-2.
  • 45. Wang H, Gong L, Liao J, Chen H, Xie W, Yang B. Retaining meta-stable fcc-Cr phase by restraining nucleation of equilibrium bcc-Cr phase in CuCrZrTi alloys during ageing. J Alloys Compd. 2018;749:140–5. https://doi.org/10.1016/j.jallcom.2018.03.238.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ad2eb49-824f-4920-805c-f7392cf8336b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.