PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation on the compressive behaviour of FRP‑confined rectangular concrete columns

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comprehensive experimental study on the behaviour of FRP-confined concrete in square and rectangular columns and focuses on some issues that might be addressed with a view to improving the predictive models. For this purpose, 31 prismatic concrete specimens with a height of 600 mm and low- and medium-strength concrete (20-35 MPa) were tested under centred compression. The parameters studied were the aspect ratio between the sides of the section (1, 1.5 and 2), the radius of curvature of the corners (20, 25 and 30 mm) and the number of carbon FRP layers applied. The experimental results included stress-strain curves of specimens and detailed information about the confined concrete strength and the axial and lateral strain achieved on the FRP jacket during the tests. The stress-strain response and ultimate condition are analysed, showing that FRP jacketing is an efficient technique for increasing the strength and strain capacity, but that confinement efficiency decreases as the aspect ratio of the section increases. In spite of such decrease, significant strength improvement was achieved for low-strength concrete in rectangular sections with aspect ratios of 1.5 (strength gain up to 81%), and even 2 (up to 36%). The axial strength of the tests was compared with the design criteria of four international guidelines, resulting in predictions that did not properly fit for rectangular sections. A predictive equation is proposed to assess the axial compressive strength of the FRP-confined concrete, which includes a better adjustment for the strain efficiency factor and the shape factor for rectangular columns.
Rocznik
Strony
art. no. e131
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • Instituto de Ciencias de la Construccion Eduardo Torroja (IETCC), CSIC, Serrano Galvache 4, 28033 Madrid, Spain
  • Instituto de Ciencias de la Construccion Eduardo Torroja (IETCC), CSIC, Serrano Galvache 4, 28033 Madrid, Spain
  • Instituto de Ciencias de la Construccion Eduardo Torroja (IETCC), CSIC, Serrano Galvache 4, 28033 Madrid, Spain
  • Universidad Politecnica de Madrid UPM, C/Profesor Aranguren, no 3, 28040 Madrid, Spain
  • Instituto de Ciencias de la Construccion Eduardo Torroja (IETCC), CSIC, Serrano Galvache 4, 28033 Madrid, Spain
  • Instituto de Ciencias de la Construccion Eduardo Torroja (IETCC), CSIC, Serrano Galvache 4, 28033 Madrid, Spain
  • Instituto de Ciencias de la Construccion Eduardo Torroja (IETCC), CSIC, Serrano Galvache 4, 28033 Madrid, Spain
Bibliografia
  • 1. Amran YHM, Alyousef R, Rashid RSM, Alabduljabbar H, Hung C. Properties and applications of FRP in strengthening RC structures: a review. Structures. 2018;16:208-38. https://doi.org/10.1016/j.istruc.2018.09.008.
  • 2. Naser MZ, Hawileh RA, Abdalla JA. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: a critical review. Eng Struct. 2019;198: 109542. https://doi.org/10.1016/j.engstruct.2019.109542.
  • 3. Triantafillou TC, Plevris N. Strengthening of RC beams with epoxy-bonded fibre-composite materials. Mater Struct. 1992;25:201-11. https://doi.org/10.1007/BF02473064.
  • 4. Kar S, Biswal KC. Rehabilitation of RC flexural members in shear with externally bonded fiber-reinforced polymer composites: present status and future need. Archiv Civ Mech Eng. 2021;21:130. https://doi.org/10.1007/s43452-021-00274-8.
  • 5. Ilia E, Mostofinejad D, Moghaddas A. Cyclic behavior of strong beam-weak column joints strengthened with different configurations of CFRP sheets. Archiv Civ Mech Eng. 2020;20:31. https://doi.org/10.1007/s43452-020-0015-7.
  • 6. Berthet JF, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study. Constr Build Mater. 2005;19(3):223-32. https://doi.org/10.1016/j.conbuildmat.2004.05.012.
  • 7. Cui C, Sheikh SA. Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers. J Compos Constr. 2010;14(5):553-61. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116.
  • 8. Li G. Experimental study of FRP confined concrete cylinders. Eng Struct. 2006;28:1001-8. https://doi.org/10.1016/j.engstruct.2005.11.006.
  • 9. Vincent T, Ozbakkaloglu T. Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultrahigh-strength concrete. Compos B Eng. 2013;50:413-28. https://doi.org/10.1016/j.compositesb.2013.02.017.
  • 10. Ozbakkaloglu T, Lim JC. Axial compressive behavior of FRP-confined concrete: experimental test database and a new design-oriented model. Compos B Eng. 2013;55:607-34. https://doi.org/10.1016/j.compositesb.2013.07.025.
  • 11. de Lorenzis L, Tepfers RAA. Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites. J Compos Constr. 2003;7:219-37. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219).
  • 12. Harries KA, Carey SA. Shape and “gap” effects on the behavior of variably confined concrete. Cem Concr Res. 2003;33:881-90. https://doi.org/10.1016/S0008-8846(02)01085-2.
  • 13. Shan B, Gui FC, Monti G, Xiao Y. Effectiveness of CFRP confinement and compressive strength of square concrete columns. J Compos Constr. 2019;23(6):04019043. https://doi.org/10.1061/(ASCE)CC.1943-5614.00009 67.
  • 14. de Diego A, Arteaga A, Fernandez J, Perera R, Cisneros D. Behaviour of FRP confined concrete in square columns. Mater Construcc. 2015;65(320): e069. https://doi.org/10.3989/mc.2015.05414.
  • 15. Siddiqui N, Abbas H, Almusallam T, Binyahya A, Al-Salloum Y. Compression behavior of FRP-strengthened RC square columns of varying slenderness ratios under eccentric loading. J Build Eng. 2020;32:10151. https://doi.org/10.1016/j.jobe.2020.101512.
  • 16. Monti G, Nistico N. Square and rectangular concrete columns confined by C-FRP: experimental and numerical investigation. Mech Compos Mater. 2008;44(3):289-308. https://doi.org/10.1007/s11029-008-9021-1.
  • 17. de Diego A, Arteaga A, Fernandez J. Strengthening of square concrete columns with composite materials. Investigation on the FRP jacket ultimate strain. Compos B Eng. 2019;162:454-60. https://doi.org/10.1016/j.compositesb.2019.01.017.
  • 18. Wang LM, Wu YF. Effects of corner radius on the performance of CFRP-confined square concrete columns: test. Eng Struct. 2008;30(2):493-505. https://doi.org/10.1016/j.engstruct.2007.04.016.
  • 19. Al-Salloum YA. Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates. Compos B Eng. 2007;38:640-50. https://doi.org/10.1016/j.compositesb.2006.06.019.
  • 20. Gambarelli S, Nistico N, Ozbolt J. Numerical analysis of compressed concrete columns confined with CFRP: microplane-based approach. Compos B Eng. 2014;67:303-12. https://doi.org/10.1016/j.compositesb.2014.06.026.
  • 21. Lin G, Teng JG. Advanced stress-strain model for FRP-confined concrete in square columns. Compos B Eng. 2020. https://doi.org/10.1016/j.compositesb.2020.108149.
  • 22. Nistico N, Monti G. RC square sections confined by FRP: analytical prediction of peak strength. Compos B Eng. 2013;45:127-37. https://doi.org/10.1016/j.compositesb.2012.09.041.
  • 23. Cao YG, Zhang Y, Liu MY, Lu ZF, Jiang C. Analysis-oriented stress-strain model for FRP-confined predamaged concrete. J Builg Eng. 2021;36: 102121. https://doi.org/10.1016/j.jobe.2020.102121.
  • 24. Federation internationale du beton. fib Bulletin 90, Externally bonded FRP reinforcement for RC structures. fib, Lausanne, Switzerland, 2019.
  • 25. Concrete Society. TR55 Technical Report Design guidance for strengthening concrete structures using fibre composite materials, 3rd edition, UK, 2012.
  • 26. American Concrete Institute. ACI-440.2R-17, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, Farmington Hills, Michigan, 2017.
  • 27. National Research Council, Advisory committee on technical recommendations for construction, CNR-DT200_R1. Guide for the design and construction of externally bonded FRP systems for strengthening existing structures, Italy, 2013.
  • 28. Moodi Y, Mousavi RS, Sohrabi MR. New models for estimating compressive strength of concrete confined with FRP sheets in circular sections. J Reinf Plast Comp. 2019;38(21-22):1014-28. https://doi.org/10.1177/0731684419858708.
  • 29. Realfonzo R, Napoli A. Concrete confined by FRP systems: confinement efficiency and design strength models. Compos B Eng. 2011;42:736-55. https://doi.org/10.1016/j.compositesb.2011.01.028.
  • 30. Teng JG, Jiang T, Lam L, Luo YZ. Refinement of a design-oriented stress-strain model for FRP-confined concrete. J Compos Constr. 2009;13:269-78. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
  • 31. Nistico N, Pallini F, Rousakis T, Wu YF, Karabinis A. Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections. Compos B Eng. 2014;67:543-54. https://doi.org/10.1016/j.compositesb.2014.07.026.
  • 32. Wu G, Wu ZS, Lu ZT. Design-oriented stress-strain model for concrete prisms confined with FRP composites. Constr Builg Mater. 2007;21(5):1107-21. https://doi.org/10.1016/j.conbuildmat.2005.12.014.
  • 33. Lam L, Teng JG. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J Reinf Plast Compos. 2003;22:1149-86. https://doi.org/10.1177/0731684403035429.
  • 34. Fanaradelli T, Rousakis T, Karabinis A. Reinforced concrete columns of square and rectangular section, confined with FRP-prediction of stress and strain at failure. Compos B Eng. 2019. https://doi.org/10.1016/j.compositesb.2019.107046.
  • 35. Moran DA, Pantelides CP, Reaveley LD. Mohr-coulomb model for rectangular and square FRP-confined concrete. Compos Struct. 2019;209:889-904. https://doi.org/10.1016/j.compstruct.2018.11.024.
  • 36. Wu YF, Wang LM. Unified strength model for square and circular concrete columns confined by external jacket. J Struct Eng ASCE. 2009;135(3):253-61. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253).
  • 37. Faustino P, Chastre C, Paula R. Design model for square RC columns under compression confined with CFRP. Compos B Eng. 2014;57:187-98. https://doi.org/10.1016/j.compositesb.2013.09.052.
  • 38. Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng. 1988;114:1804-26. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • 39. Karam G, Tabbara M. Corner effects in CFRP-wrapped square columns. Mag Concr Res. 2004;56:461-4. https://doi.org/10.1680/macr.2004.56.8.461.
  • 40. Mirmiran A, Shahawy M, Samaan M, El Echary H, Mastrapa JC, Pico O. Effect of column parameters on FRP-confined concrete. J Compos Constr. 1998;2:175-85. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175).
  • 41. Pham TM, Hadi MNS. Stress prediction model for FRP confined rectangular concrete columns with rounded corners. J Compos Constr. 2014;18:04013019. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000407.
  • 42. Wu Y, Wei YY. Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns. Eng Struct. 2010;32:32-45. https://doi.org/10.1016/j.engstruct.2009.08.012.
  • 43. Lam L, Teng JG. Ultimate condition of fiber reinforced polymer-confined concrete. J Compos Constr. 2004;8:539-48. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
  • 44. Yang X, Nanni A, Chen G. Effect of corner radius on the performance of externally bonded FRP reinforcement. In: Telford T, editor. Proc., 5th Int. Conf. on Fibre-Reinforced Plastics for Reinforced Concrete Structures. London, 2001.p. 197-204.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aceff36-8036-493c-8d42-e81531549942
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.