THE CONIC OF CENTERS S² OF A PENCIL P² 1=2=3.4 #### Barbara WOJTOWICZ Cracow University of Technology Warszawska 24, 31-155 Kraków, Poland e-mail: barbarawojtowicz@interia.pl **Abstract.** The **E**-transformation is quadratic in the projective 2-dimensional space and based on the circle \mathbf{n}^2 and the center \mathbf{W} , which lies on the circle \mathbf{n}^2 . In the **E**-transformation to the straight line \mathbf{a} ' corresponds a conic \mathbf{a}^2 . The elation has been defined, where \mathbf{a} ' is a vanishing line, the line \mathbf{t}_a parallel to \mathbf{a} ' and passing through the point \mathbf{W} is the axis of elation. All lines that do not pass through the center of the transformation \mathbf{W} will correspond to osculary conics passing through the three points 1=2=3 coinciding with the center \mathbf{W} . The centers of these conics make also a conic of centers \mathbf{s}^2 . Special cases are distinguished dependent on whether the base quadrangle 1=2=3,4 is concave or convex. The case with point 4 lying at infinity has been discussed. Two theorems have been formulated and proved. **Keywords.** Projective geometry, conic of centers, base quadrangle, pencils of osculary tangent conics, elation. ### 1. Definition of the E-transformation The E-transformation is a quadratic transformation defined as follows. Let us distinguish the point W, which lies in the given circle \mathbf{n}^2 . We determine the tangent \mathbf{w} to the circle \mathbf{n}^2 at point W. (Fig.1). Let us assume that the arbitrary line \mathbf{a} ' be the vanishing line of the elation defined with the center W and the axis of elation $\mathbf{t}_{\mathbf{a}}$, which is parallel to the line \mathbf{a} ' and passes through point W. We call a perspective collineation an elation according as the center and axis are incident (Coxeter [1], p.248), which is here the case. Let us determine the relation between the arbitrary line \mathbf{a} ' and the conic \mathbf{a}^2 . We assume that the circle \mathbf{n}^2 will be transformed in the defined elation into the conic \mathbf{a}^2 . The correspondence between the line \mathbf{a} ' and the conic \mathbf{a}^2 will be called a quadratic E-transformation. Certainly, the type of the conic \mathbf{a}^2 received in the E-transformation depends on the mutual position of the vanishing line \mathbf{a} ' and the circle \mathbf{n}^2 . Fig. 1: The basis of the E transformation In the publication (Wojtowicz [6]) special cases of the line \mathbf{a} ' and the circle \mathbf{n}^2 mutual position have been discussed. The following cases are distinguished depending on whether the line \mathbf{a} ' and the circle \mathbf{n}^2 are disjoint or not. - 1) In case the line a' is external in reference to the circle n^2 , then the corresponding conic a^2 is an ellipse. - 2) In case the line a' is tangent to the circle n², then the corresponding conic a² is a parabola. - 3) In case the line a' is the secant of the circle n^2 , then the corresponding conic a^2 is a hyperbola. Let us now determine the basic elements of the conic \mathbf{a}^2 , which corresponds to the line \mathbf{a} '. In order to draw the diameter of the conic \mathbf{a}^2 we consider the point \mathbf{Q} ' at which lines \mathbf{w} and \mathbf{a} ' meet. The polar \mathbf{q} of the point \mathbf{Q} ' with respect to the circle \mathbf{n}^2 will be transformed into one diameter of the conic \mathbf{a}^2 (Fig.1). ## 2. Special cases of the E-transformation It has been proved (Wojtowicz [6]) that the lines a', b', c', ... not passing through the point W will be transformed into osculary tangent conics a^2 , b^2 , c^2 ,..... The three coinciding points of tangency 1=2=3 of these conics coincide with the point W. Point 4 can be optionally chosen on one of the conics a^2 , b^2 , c^2 ,..... Let us now consider some particular cases depending on the position of the base points 1=2=3,4 of the pencil $P^2_{1=2=3,4}$ of osculary tangent conics a^2 , b^2 , c^2 ,.... If point 4 lies on the same side with respect to the line w as the circle n^2 , then we can consider the base quadrangle of the pencil to be convex, if point 4 lies on the opposite side with respect to the line w to the circle n^2 , then the quadrangle 1=2=3,4 is concave (Wojtowicz [6], p.7-10). The centers of the conics, which create the pencil $P^2_{1=2=3,4}$, lie on the conic called s^2 (Plamitzer [5], p. 61-63). We can distinguish the following particular cases. **CASE I.** If the base quadrangle 1=2=3, 4 is convex then the conic s^2 is a hyperbola (Fig.2). **CASE II.** If the base quadrangle 1=2=3, 4 is concave then the conic s^2 is an ellipse. CASE III. If the fourth vertex of the base quadrangle 1=2=3, 4^{∞} lies at infinity then the conic s^2 is a hyperbola. Fig. 2: The conic of centers s² is a hyperbola Let us discuss the case with a hyperbola s^2 (CASE I). It has been assumed that the fourth vertex 4 of the quadrangle lies inside the circle \mathbf{n}^2 and the quadrangle 1=2=3,4 is convex (Fig.2). Thus the conic s^2 is a hyperbola. The segment $\overline{WW_1}$ (point $\mathbf{W_1}$ is a midpoint of the segment $\overline{W4}$) is the diameter of the constructed hyperbola. The midpoint \mathbf{S} of the segment $\overline{WW_1}$, is a center of this hyperbola. The points **4'**, **P** and **R** (respectively the tangent points of the lines **p** and **r** drawn from the point **4'** to the circle **n**²) have been also determined. To points **P** and **R** correspond respectively points **P**^{∞} and **R**^{∞}, which are the centers of the two parabolas, which belong to the pencil **P**² $_{1=2=3,4}$ of conics. The asymptotes of the hyperbola are passing through the point **S** and the two points **P**^{∞} and **R**^{∞}. Fig. 3: An ellipse as a case of the conic of centers s^2 The base quadrangle 1=2=3, 4 presented in Fig. 3 is convex as the point 4 lies on the opposite side to the circle \mathbf{n}^2 in respect to the line \mathbf{w} . Thus the conic of the centers is an ellipse. The diameter WW_1 of the conic \mathbf{s}^2 and two conjugate with this diameter tangents \mathbf{w} and \mathbf{w}_1 are determined. In Fig. 4 a special case of the base quadrangle 1=2=3, 4^{∞} is presented. Point 4^{∞} corresponds to the point 4' lying on the circle n^2 . The line a' parallel to the line w and passing through the point 4' has been specified. The center S_a of the hyperbola a^2 corresponding to the line a' is determined. The conic of centers s^2 is a parabola in this case. This parabola will be defined with the diameter $W4^{\infty}$ conjugate to the tangent w at the point W and the point S_a . Fig. 4: For the base quadrangle 1=2=3, 4° a parabola will be the conic of centers s^2 Theorem 1: The pencil of conics $P^2_{1=2=3,4}$, to which belong conics a^2 , b^2 , c^2 ,..., is in projective relation to the range of points of the second order with the base on the conic of centers s^2 and the elements S_a , S_b , S_c ,... being respectively the centers of the conics a^2 , b^2 , c^2 ,... Fig. 5: Projective relation between the pencil of conics $P^2_{1=2=3,4}$ and the range s^2 Proof. Let us determine point 4 and draw an optional line a passing through this point (Fig.5). Line a, which is a tangent to the conic at point 4 together with the points 1=2=3 defines the conic a^2 of the pencil $P^2_{1=2=3,4}$. The line a meets the line w at point A_w , which is a pole of the secant $\overline{W4}$ of the conic a^2 . Thus the line $s_a = A_w W_1$, where W_1 is the midpoint of the segment $\overline{W4}$, is the diameter of the conic a^2 and it meets the conic s^2 at the point S_a , which is the center of the conic a^2 . Similarly, we construct the line s_b and the center S_b of another conic b^2 . In consequence we obtain the following range of perspective elements: $$\begin{array}{c} P^2_{1=2=3,4} \ (a^2,\, b^2,\, c^2,....) \ \overline{\overline{\wedge}} \ 4(a,\, b,\, c,\, ...) \ \overline{\overline{\wedge}} \ w(A_w,\, B_w,\, C_w,...) \ \overline{\overline{\wedge}} \\ \overline{\overline{\wedge}} \ W_1(s_a,\, s_b,\, s_c,\, ...) \ \overline{\overline{\wedge}} \ s^2(S_a,\, S_b,\, S_c,\, ...) \end{array}$$ The boundary elements of this projective chain are projective $$P^2_{1=2=3,4}(a^2,b^2,c^2,...) \times s^2(S_a,S_b,S_c,...)$$ as stated. ## 3. Properties of the E-transformation Theorem 2: The radius of the osculary tangent circle n_1^2 at point W of the conic of centers s^2 is half the length of the radius of the circle a^2 . Fig. 6: Construction of the osculary tangent circle n_1^2 to the conic of centers s^2 The proof for the Theorem 2 will be presented for the case of a hyperbola. Proof. Let the circle \mathbf{n}^2 be given together with the point $\mathbf{W}=1=2=3$ belonging to this circle. We then specify point 4 lying on the circle \mathbf{s}^2 in the opposite position with respect to the point \mathbf{W} (Fig.6). The center of the hyperbola of centers \mathbf{s}^2 lies at a half distance of the length of the circle's \mathbf{n}^2 radius. The asymptotes \mathbf{p} and \mathbf{r} make the 45° angle with respect to the line \mathbf{w} . We now consider the lines \mathbf{w} and \mathbf{r} , which meet at point 1. Let us draw a perpendicular line to the asymptote \mathbf{r} from point 1. This perpendicular meets the axis $\overline{WW_1}$ at point \mathbf{M}_{n1} , which is the center of the osculary tangent circle to the conic \mathbf{s}^2 at point \mathbf{W} . The segments \overline{WM}_{n1} and \overline{WM}_s are equal length and thus the radius of the circle \mathbf{n}_1^2 is half the length of the radius of the circle \mathbf{n}_2^2 , as stated. From the Theorem 2 it follows that when the conic s^2 is given, then it is an easy task to determine the base circle \mathbf{n}^2 of the E-transformation and, in consequence, to determine conjugate diameters or the asymptotes of the conics belonging to the pencil $\mathbf{P}^2_{1=2=3,4}$ (Kaczmarek [7]). In Fig.7 the hyperbola s^2 is given to be the conic of the centers of the pencil $P^2_{1=2=3,4}$. The circle n_1^2 corresponding to the hyperbola s^2 and the circle n^2 as the base of the E-transformation have been determined. An optionally chosen point M_a on the hyperbola s^2 is the center of the conic a^2 to be constructed. The tangent s_a to this conic at point 4 has been constructed. Fig. 7: Hyperbola as a conic of the centers s^2 and the construction of an exemplary ellipse with the center M_a The proof for the Theorem 2 will be similar for the other types of conics. Fig.8 illustrates the case, where the conic of centers s^2 is assumed to be a circle. The base circle n^2 of the E-transformation is double size of the circle s^2 , while the point 4' coincides with the center of the circle n^2 . Let us choose an arbitrary point M_a on the circle s^2 to be a center of a hyperbola a^2 . The asymptotes of the hyperbola and the tangent \bar{a} at point 4 are constructed. Fig. 8: Special case of the E-transformation where the conic s^2 coincides with the conic n_1^2 ### References - [1] Coxeter H.S.M.: *Introduction to Geometry*. John Wiley & Sons, Inc., New York, London 1961. - [2] Hilbert D., Cohn-Vossen S.: Geometria pogladowa. PWN, Warszawa 1956. - [3] Szerszeń St.: Nauka o rzutach., PWN, Warszawa 1974. - [4] Plamitzer A.: Elementy geometrii rzutowej. Lwów 1927. - [5] Plamitzer A.: *Geometria rzutowa*. Komitet Wydawniczy Podręczników Akademickich, Warszawa 1938. - [6] Wojtowicz B.: *Pencils of osculary tangent conics*. The Journal BIULETYN of Polish Society of Geometry and Engineering Graphics, Vol.17, Gliwice 2007. - [7] Kaczmarek J.: Konstrukcje okręgów ściśle stycznych do stożkowych wynikające z prze- kształcenia elacyjnego. Zeszyty Naukowe – Geometria Wykreślna Warszawa 1964. [8] Jonak M.: Paraboles d'un faisceau ponctuel de coniques, Zeszyty Naukowe AGH im St. Staszica – Opuscula Mathematica, Vol.5, Kraków 1989. # STOŻKOWE ŚRODKÓW PĘKU $P^2_{1=2=3,4}$ Praca jest kontynuacją artykułu "Pęki stożkowych nadściśle stycznych ($P^2_{1=2=3,4}$)" ([6]), w której omówiono przekształcenie kwadratowe "E", dla którego bazą jest okrąg \mathbf{n}^2 , natomiast środkiem przekształcenia jest punkt \mathbf{W} leżący na okręgu \mathbf{n}^2 . Stwierdzono, że wszystkie proste, które nie przechodzą przez punkt \mathbf{W} , przekształcają się w stożkowe wzajemnie ściśle styczne czyli przechodzące przez trzy punkty $\mathbf{1}=\mathbf{2}=\mathbf{3}$ pokrywające się z punktem W. Środki poszczególnych stożkowych pęku leżą na stożkowej, którą nazwano stożkowa środków i oznaczono s^2 . W pracy omówiono trzy przypadki, w których w zależności od czworokąta podstawowego 1=2=3,4 stożkowa środków s^2 jest hiperbolą, elipsą, parabolą. Przedstawiono również twierdzenie, z którego wynika, iż mając zadaną stożkową środków s^2 można wyznaczyć bazę n^2 przekształcenia "E" oraz wyznaczyć średnice sprzężone lub asymptoty poszczególnych stożkowych pęku P^2 $_{1=2=3,4}$. W pracy pokazano, że pęk stożkowych P^2 $_{1=2=3,4}$, którego elementami są stożkowe P^2 $_{1=2=3,4}$, którego podstawą jest "stożkowa środków"