PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relatively orthocomplemented skew nearlattices in Rickart rings

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the AAA88 - 88th Workshop on General Algebra Editors for the Special Issue: Anna Romanowska, Jonathan D. H. Smith
Języki publikacji
EN
Abstrakty
EN
A class of (right) Rickart rings, called strong, is isolated. In particular, every Rickart *-ring is strong. It is shown in the paper that every strong Rickart ring R admits a binary operation which turns R into a right normal band having an upper bound property with respect to its natural order ≤; such bands are known as right normal skew nearlattices. The poset (R, ≤) is relatively orthocomplemented; in particular, every initial segment in it is orthomodular. The order ≤ is actually a version of the so called right-star order. The one-sided star orders are well-investigated for matrices and recently have been generalized to bounded linear Hilbert space operators and to abstract Rickart *-rings. The paper demonstrates that they can successfully be treated also in Rickart rings without involution.
Wydawca
Rocznik
Strony
493--508
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Institute of Mathematics and Computer Science, University of Latvia, Raina b., 29 Riga, LV-1459, Latvia
Bibliografia
  • [1] S. A. Al-Saadi, T. A. Ibrahiem, Strongly Rickart rings, Math. Theor. Modeling 4(2014), 95–105.
  • [2] J. K. Baksalary, S. K. Mitra, Left-star and right-star partial ordering, Linear Algebra Appl. 149 (1991), 73–89.
  • [3] S. K. Berberian, Baer *-rings. Springer-Verlag, Berlin-Heidelberg-New York, 2011.
  • [4] J. Cīrulis, Knowledge representation systems and skew nearlattices, in: I. Chajda et al. (eds.), Contributions to General Algebra 14, Verlag Johannes Heyn, Klagenfurt, 2004, 43–51.
  • [5] J. Cīrulis, Skew nearlattices: some structure and representation theorems, in: I. Chajda et al. (eds.), Contributions to General Algebra 19, Verlag Johannes Heyn, Klagenfurt, 2010, 33–44.
  • [6] J. Cīrulis, Quasi-orthomodular posets and weak BCK-algebras, Order 31 (2013), 403–419, DOI 10.1007/s11083-013-9309-1 .
  • [7] J. Cīrulis, Lattice operators on Rickart *-rings under the star order, Linear Multilinear Algebra 63 (2015), 497–708, DOI 10.1080/03081087.2013.873429.
  • [8] J. Cīrulis, On one-sided star partial orders on a Rickart *-ring, arXiv:1410.4693v1, 2014.
  • [9] Ch. Deng, Sh. Wang, On some characterizations of the partial ordering for bounded operators, Math. Inequal. Appl. 12 (2012), 619–630.
  • [10] G. Dolinar, A. Guterman, J. Marovt, Monotone transformations on B(H) with respect to the left-star and the right-star partial order, Math. Inequal. Appl. 17 (2014), 573–589.
  • [11] D. J. Foulis, Baer *-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648–654.
  • [12] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.
  • [13] M. F. Janowitz, A note on Rickart rings and semi-Boolean algebras, Algebra Universalis 6 (1976), 9–12.
  • [14] N. Kimura, Note on idempotent semigroups, I, Proc. Japan. Acad. 34 (1957), 642–645.
  • [15] L. Lebtahi, P. Patricio, N. Thome, The diamond partial order in rings, Linear Multilinear Algebra 62 (2014), 386–395.
  • [16] S. Maeda, On a ring whose principal right ideals generated by idempotents form a lattice, J. Science Hirosh. Univ. Ser. A 24 (1960), 509–525.
  • [17] J. Marovt, D. S. Rakić, D. S. Djodjević, Star, left-star, and right-star partial orders in Rickart *-rings, Linear Multilinear Algebra 63 (2015), 343–365. http://dx.dot.prg/10.1080/03081087.2013.866670.
  • [18] S. K. Mitra, P. Bhimasanharam, S. B. Malik, Matrix Partial Orders, Shorted Operators and Applications, World Scientific, Singapore, 2010.
  • [19] M. Yamada, N. Kimura, Note on idempotent semigroups, II, Proc. Japan. Acad. 34 (1958), 110–112.
  • [20] V. V. Vagner, Restrictive semigroups (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 6(31) (1962), 19–27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aca1092-55b0-419c-a950-75c8dc0182f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.