PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and evaluating piston slap-induced cavitation of cylinder liners in heavy-duty diesel engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cavitation erosion of cylinder liner seriously affects the operational reliability and service life of heavy-duty diesel engines. The accuracy of the modeling-based cavitation risk evaluation is limited by the unclear correspondence between cylinder liner vibration and coolant cavitation. This report is intended to investigate the correspondence between cylinder liner vibration and coolant pressure by combining vibration cavitation test, pressure gradient calculation, and visualization observation. The cavitation risk of the cylinder liner under the piston slap is quantitatively analyzed based on a nonlinear structural dynamics model that incorporates the piston-cylinder liner nonlinear collision, piston thermal deformation, and preload of cylinder head. The results show that the occurrence of cavitation will cause a nonlinear relationship between the cylinder liner acceleration and the coolant pressure. The engine under study has a high risk of cavitation when the cylinder liner acceleration exceeds 1189 m/s2. The difference in cavitation risk for each cylinder is related to the structural modal characteristics of the crankcase. In addition, the effect of piston-liner clearance and piston pin offset on the cavitation risk is investigated based on the dynamics model.
Rocznik
Strony
art. no. 169644
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
  • Department of Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
autor
  • Weichai Power Co., Ltd., Weifang 261061, China
autor
  • Weichai Power Co., Ltd., Weifang 261061, China
autor
  • Weichai Power Co., Ltd., Weifang 261061, China
autor
  • Department of Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
autor
  • Department of Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
autor
  • Centre for Efficiency and Performance Engineering, University of Huddersfield HD1 3DH, United Kingdom
Bibliografia
  • 1. Abreu M, Sundberg J, Elfsberg J, et al. Morphology and mechanisms of cavitation damage on lamellar gray iron surfaces[J]. Wear, 2020, 456: 203324, https://doi.org/10.1016/j.wear.2020.203324.
  • 2. Antkowiak A, Bremond N, Le Dizes S, et al. Short-term dynamics of a density interface following an impact[J]. Journal of Fluid Mechanics, 2007, 577: 241-250, https://doi.org/10.1017/s0022112007005058.
  • 3. Bai L, Yan J, Zeng Z, et al. Cavitation in thin liquid layer: A review[J]. Ultrasonics Sonochemistry, 2020, 66: 105092, https://doi.org/10.1016/j.ultsonch.2020.105092.
  • 4. Bako S, Nasir A, Ige B, et al. Canvitational deterioration of diesel power plant cylinder liner[J]. Journal of Mechanical and Energy Engineering, 2020, 4(3): 239-246, https://doi.org/10.30464/jmee.2020.4.3.239.
  • 5. Bezyukov O K, Zhukov V A, Pulyaev A A. Criteria for calculating cavitation erosion in cooling systems for internal combustion engines[C]//AIP Conference Proceedings. AIP Publishing LLC, 2022, 2647(1): 060010, https://doi.org/10.1063/5.0118556.
  • 6. Brennen C E. Cavitation and bubble dynamics[M]. Cambridge university press, 2014, https://doi.org/10.1017/CBO9781107338760
  • 7. Dolatabadi N, Theodossiades S, Rothberg S J. On the identification of piston slap events in internal combustion engines using tribodynamic analysis[J]. Mechanical Systems and Signal Processing, 2015, 58: 308-324, https://doi.org/10.1016/j.ymssp.2014.11.012.
  • 8. Dong, Hong-Quan; Dynamic modeling and cavitation tendency analysis of cylinder liner considering the effects of moving loads[J].Transactions of Csice,2013,Vol.31(5): 467-472.
  • 9. Fatjó G G A, Pérez A T, Hadfield M. Experimental study and analytical model of the cavitation ring region with small diameter ultrasonic horn[J]. Ultrasonics sonochemistry, 2011, 18(1): 73-79. https://doi.org/10.1016/j.ultsonch.2009.12.006.
  • 10. Fontanesi S, Giacopini M, Cicalese G, et al. Numerical investigation of the cavitation damage in the wet cylinder liner of a high performance motorbike engine[J]. Engineering Failure Analysis, 2014, 44: 408-423, https://doi.org/10.1016/j.engfailanal.2014.05.025.
  • 11. Geng Z, Chen J. Investigation into piston-slap-induced vibration for engine condition simulation and monitoring[J]. Journal of sound and vibration, 2005, 282(3-5): 735-751, https://doi.org/10.1016/j.jsv.2004.03.057.
  • 12. Gomboc S, Cristofaro M, Haramincic B, et al. Cavitation Erosion Prediction at Vibrating Walls by Coupling Computational Fluid Dynamics and Multi-body-Dynamic Solutions[J]. SAE International Journal of Commercial Vehicles, 2021, 14(02-14-03-0021): 259-270, https://doi.org/10.4271/02-14-03-0021.
  • 13. Hosny D M, Young R W, Engineering Mechanics Seniors. A system approach for the assessment of cavitation corrosion damage of cylinder liners in internal combustion engines[J]. SAE Transactions, 1993: 699-715, https://doi.org/10.4271/930581.
  • 14. Javanmardi D, Rezvani M A. Thermomechanical Fracture Failure Analysis of a Heavy-Duty Diesel Engine Cylinder Liner through Performance Analysis and Finite Element Modeling[J]. SAE International Journal of Engines, 2020, 13(5): 665-684, https://doi.org/10.4271/03-13-05-0042.
  • 15. Krechetnikov R. Flow around a corner in the water impact problem[J]. Physics of Fluids, 2014, 26(7): 072107, https://doi.org/10.1063/1.4891229.
  • 16. Li G, Gu F, Wang T, et al. Investigation into the vibrational responses of cylinder liners in an IC engine fueled with biodiesel[J]. Applied Sciences, 2017, 7(7): 717, https://doi.org/10.3390/app7070717.
  • 17. Lin L J. An Analysis of the Factors Influencing Cavitation in the Cylinder Liner of a Diesel Engine[J]. Fluid Dynamics & Materials Processing, 2022, 18(6):1667-1682, http://doi.org/10.32604/fdmp.2022.019768.
  • 18. Liu H, Wang X, Wu Y, et al. Effect of diesel/PODE/ethanol blends on combustion and emissions of a heavy duty diesel engine[J]. Fuel, 2019, 257: 116064, https://doi.org/10.1016/j.fuel.2019.116064.
  • 19. Lowe A S H. An Analytical Technique for Assessing Cylinder Liner Cavitation Erosion[J]. SAE Transactions, 1990: 439-448, https://doi.org/10.4271/900134.
  • 20. Meng F M, Wang X F, Li T T, et al. Influence of cylinder liner vibration on lateral motion and tribological behaviors for piston in internal combustion engine[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229(2): 151-167, https://doi.org/10.1177/1350650114545140.
  • 21. Moussatov A, Granger C, Dubus B. Ultrasonic cavitation in thin liquid layers[J]. Ultrasonics sonochemistry, 2005, 12(6): 415-422, https://doi.org/10.1016/j.ultsonch.2004.09.001.
  • 22. Murakami H, Nakanishi N, Ono N, et al. New three-dimensional piston secondary motion analysis method coupling structure analysis and multi body dynamics analysis[J]. SAE International Journal of Engines, 2012, 5(1): 42-50, https://doi.org/10.4271/2011-32-0559.
  • 23. Nouri J M, Vasilakos I, Yan Y. Cavitation between cylinder-liner and piston-ring in a new designed optical IC engine[J]. International Journal of Engine Research, 2022, 23(7): 1144-1158, https://doi.org/10.1177/14680874211008007.
  • 24. Ohta K, Wang X, Saeki A. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine[J]. Journal of Sound and Vibration, 2016, 363: 329-344, https://doi.org/10.1016/j.jsv.2015.10.026.
  • 25. Pan Z, Kiyama A, Tagawa Y, et al. Cavitation onset caused by acceleration[J]. Proceedings of the National Academy of Sciences, 2017, 114(32): 8470-8474. https://doi.org/10.1073/pnas.1702502114.
  • 26. Peiyou X, Daojing G, Guannan H, et al. Influence of piston pin hole offset on cavity erosion of diesel engine cylinder liner[J]. Engineering Failure Analysis, 2019, 103: 217-225, https://doi.org/10.1016/j.engfailanal.2019.04.022.
  • 27. Pogodaev L I, Tret’Yakov D V, Valishin A G, et al. Simulation of durability of cylinder liners of an internal combustion engine under vibration cavitation[J]. Journal of Machinery Manufacture and Reliability, 2008, 37(2): 143-151, https://doi.org/10.3103/s105261880802009x.
  • 28. Shi Z, Cao W, Wu H, et al. Research on destructive knock combustion mechanism of heavy-duty diesel engine at low temperatures[J]. Combustion Science and Technology, 2022: 1-24, https://doi.org/10.1080/00102202.2022.2156790.
  • 29. Steck B. Avoiding cavitation on wet cylinder liners of heavy duty diesel engines by parameter changes[C]//2008 SAE Brasil Congress and Exhibit. 2008 (2008-36-0073), https://doi.org/10.4271/2008-36-0073.
  • 30. Tsujiuchi N, Koizumi T, Hamada K, et al. Optimization of profile for reduction of piston slap excitation[J]. SAE transactions, 2004: 1773-1780, https://doi.org/10.4271/2004-32-0022
  • 31. Um D. Finite Element Modeling and Analysis: Practical Application[J]. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory, 2018: 297-324. https://doi.org/10.1007/978-3-319-74594-7_9.
  • 32. Wang X, Ohta K. Study on piston slap induced liner cavitation[J]. Journal of Vibration and Acoustics, 2015, 137(5), https://doi.org/10.1115/1.4030360.
  • 33. Wang X, Wang H, Zhao J, et al. Evaluation of Liner Cavitation Potential through Piston Slap and BEM Acoustics Coupled Analysis[J]. Mathematics, 2022, 10(6): 853, https://doi.org/10.3390/math10060853.
  • 34. Wang X, Zhang Z, Li Y. Analysis of water coolant pressure fluctuation induced by piston slap[J]. Engineering Failure Analysis, 2020, 112: 104382, https://doi.org/10.1016/j.engfailanal.2020.104382.
  • 35. Wu L, Bi Y, Shen L, et al. Study on the effect of piston skirt profile on the vibration behavior of non-road high pressure common rail diesel engine[J]. Applied Acoustics, 2019, 148: 457-466, https://doi.org/10.1016/j.apacoust.2019.01.007.
  • 36. Zhang B, Zhang P, Guo X, et al. simulation Research on Cavitation Flow Characteristics of Highly Enhanced Diesel Engine Cooling System[C]//Iop Conference Series: Earth And Environmental Science. IOP Publishing, 2019, 237(4): 042017, http://doi.org/10.1088/1755-1315/237/4/042017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ac928bd-a50a-4451-9b00-db539368059c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.