PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sorption isotherm study of manganese removal from aqueous solutions by natural and MnO2-coated zeolite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The applicability of the natural and MnO2-coated zeolite as sorbent for the removal of Mn(II) from synthetic solutions has been investigated. Batch experiments were carried out to determine the influence of pH and Mn(II) concentration on the sorption process. A maximum removal efficiency (98.9%) was observed for modified zeolite with the concentration of 10 mg/dm3 of manganese in solution. The equilibrium data showed a very good correlation for both Langmuir and Freundlich sorption models and this suggests both monolayer adsorption and a heterogeneous surface existence. Maximum sorption capacity calculated from the Langmuir model constituted 5.57 mg/g for natural zeolite and 13.41 mg/g for modified zeolite.
Słowa kluczowe
Rocznik
Strony
17--24
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • University of Prešov in Prešov, Faculty of Management, Department of Environmental Management,Konstantinova 16, 080 01 Presov, Slovakia
  • Technical University of Košice, Civil Engineering Faculty, Institute of Environmental Engineering, Vysokoskolska 4, 042 00 Košice, Slovakia
  • Technical University of Košice, Civil Engineering Faculty, Institute of Environmental Engineering, Vysokoskolska 4, 042 00 Košice, Slovakia
  • University of Prešov in Prešov, Faculty of Management, Department of Environmental Management, Konstantinova 16, 080 01 Presov, Slovakia
  • Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia
  • Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering, 30 Reactorului, MG-6, Bucharest, 077125 Magurele, Romania
Bibliografia
  • [1] FAZEKAŠOVÁ D., FAZEKAŠ J., HRONEC O., HORŇAK M., Magnesium contamination in soil at a magnesite mining area of Jelšava-Lubeník (Slovakia), First International Conference on Advances in Environmental Engineering (AEE 2017), IOP Publishing, Ostrava, IOP Conf. Ser. Earth Environ. Sci., 2017, 92 (1), 012012.
  • [2] KULKARNI S.J., A review on studies and research on manganese removal, Int. J. Sci. Health. Res., 2016, 1 (2), 45–48.
  • [3] DVORSKÝ T., VÁCLAVÍK V., HLUŠTÍK P., Wastewater treatment in North Moravia and Silesia, from the past to the present, [In:] M. Al Ali, P. Platko (Eds.), Advances and Trends in Engineering Sciences and Technologies II, CRC Press/Balkema, Leiden 2016, 389.
  • [4] TAFFAREL S.R., RUBIO J., Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite, Miner. Eng., 2010, 23 (14), 1131–1138. DOI: 10.1016/j.mineng.2010.07.007.
  • [5] FAZEKAŠOVÁ D., FAZEKAŠ J., Soil quality and heavy metal pollution assessment of iron ore mines in Nizna Slana (Slovakia), Sustainability, 2020, 12 (6), 2549. DOI: 10.3390/su12062549.
  • [6] PERTILE E., VACLAVIK V., DVORSKY T., HEVIANKOVA S., The removal of residual concentration of hazardous metals in wastewater from a neutralization station using biosorbent. A case study Company Gutra, Czech Republic, Int. J. Environ. Res. Public Health., 2020, 17 (19), 7225. DOI: 10.3390/ijerph17197225.
  • [7] HOLUB M., BALINTOVA M., PAVLIKOVA P., DEMCAK S., Application of various methods for sulphates removal under acidic conditions, Proc. 14th International Multidisciplinary Scientific Geoconference SGEM 2014, ), STEF92 Technology Limited Liability Company, Sofia 2014, 2 (5), 39–46.
  • [8] FAZEKAŠ J., FAZEKAŠOVÁ D., ADAMIŠIN P., HULIČOVÁ P., BENKOVÁ E., Functional diversity of microorganisms in metal-and alkali-contaminated soils of Central and North-Eastern Slovakia, Soil Water Res., 2019, 14, 32–39. DOI: 10.17221/37/2018-SWR.
  • [9] SWISTOCK B., SHARPE W., ROBILLARD P.D., Iron and manganese in private water systems, PennState Extension, publ. October 18, 2019, https://extension.psu.edu/iron-and-manganese-in-private-watersystems.
  • [10] KWAKYE-AWUAH B., SEFA-NTIRI B., VON-KITI E., NKRUMAH I., WILLIAMS C., Adsorptive removal of iron and manganese from groundwater samples in ghana by zeolite y synthesized from bauxite and kaolin, Water, 2019, 11 (9), 1–19. DOI: 10.3390/w11091912.
  • [11] AKL M., Removal of iron and manganese in water samples using activated carbon derived from local agro-residues, J. Chem. Eng. Proc. Technol., 2013, 4 (4), 1–10. DOI: 10.4172/2157-7048.1000154.
  • [12] DEMCAK S., BALINTOVA M., DEMCAKOVA M., CSACH K., ZINICOVSCAIA I., YUSHIN N., FRONTASYEVA M., Effect of alkaline treatment of wooden sawdust for the removal of heavy metals from aquatic environments, Desal. Water Treat., 2019, 155, 207–215. DOI: 10.5004/dwt.2019.24053.
  • [13] RASHED M.N., PALANISAMY P.N., Introductory chapter: Adsorption and ion exchange properties of zeolites for treatment of polluted water, [In:] M.N. Rashed, P.N. Palanisamy (Eds.), Zeolites and Their Applications, InTech, 2018, 1–9. DOI: 10.5772/intechopen.77190.
  • [14] SINGH N., GUPTA D.S.K., Adsorption of heavy metals. A review, Int. J. Innov. Res. Sci. Eng. Technol., 2016, 5 (2), 2267–2281. DOI: 10.15680/IJIRSET.2016.050146.
  • [15] KOVACOVA Z., DEMCAK S., BALINTOVA M., PLA C., ZINICOVSCAIA I., Influence of wooden sawdust treatments on Cu (II) and Zn (II) removal from water, Materials, 2020, 13 (16), 3575. DOI: 10.3390/ma131 63575.
  • [16] SHAVANDI M.A., HADDADIAN Z., ISMAIL M.H.S., ABDULLAH N., ABIDIN Z.Z., Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite, J. Taiwan Inst. Chem. Eng., 2012, 43 (5), 750–759. DOI: 10.1016/j.jtice.2012.02.014.
  • [17] IRANNAJAD M., HAGHIGHI H.K., Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite. Equilibrium, thermodynamics, and kinetics studies, Clays Clay Miner., 2017, 65 (1), 52–62.
  • [18] ZeoCem a.s., accessed February 4, 2021, https://www.zeocem.com/sk/
  • [19] CLYDESDALE F.M., AHMED E.M., Colorimetry – methodology and applications, Crit. Rev. Food Sci. Nutr., 1978, 10 (3), 243–301. DOI: 10.1080/10408397809527252.
  • [20] HACH Lange, Germany. DR 890 Portable Colorimeter, User manual, 2009.
  • [21] LANGMUIR I., The adsorption of gases on plane surfaces of gass, mica and platinum, J. Am. Chem. Soc., 1918, 40 (9), 1361–1403. DOI: 10.1021/ja02242a004.
  • [22] FREUNDLICH H.M.F., Over the adsorption in solution, J. Phys. Chem., 1906, 57, 385–471.
  • [23] FUNES A., DE VICENTE J., CRUZ-PIZARRO L., DE VICENTE I., The influence of pH on manganese removal by magnetic microparticles in solution, Water Res., 2014, 5, 110–122. DOI: 10.1016/j.watres. 2014.01.029.
  • [24] BALINTOVA M., HOLUB M., STEVULOVA N., CIGASOVA J., TESARCIKOVA M., Sorption in acidic environment – biosorbents in comparison with commercial adsorbents, Chem. Eng. Trans., 2014, 39, 625–630. DOI: 10.3303/cet1439105.
  • [25] HOLUB M., BALINTOVA M., DEMCAK S., HURAKOVA M., Characterization of natural zeolite and determination its adsorption properties, J. Civ. Eng. Environ. Arch., 2016, 63 (3), 113–122. DOI: 10.7862/rb.2016.192.
  • [26] PATIL D.S., CHAVAN S.M., OUBAGARANADIN J.U.K., A review of technologies for manganese removal from wastewaters, J. Environ. Chem. Eng., 2016, 4 (1), 468–487. DOI: 10.1016/j.jece.2015.11.028.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ac48e35-7bb8-4bf1-94c9-606fc9f56e7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.