PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Small-aperture array as a tool to monitor fluid injectionand extraction‑induced microseismicity: applications and recommendations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The monitoring of microseismicity during temporary human activities such as fluid injections for hydrofracturing, hydrothermal stimulations or wastewater disposal is a difficult task. The seismic stations often cannot be installed on hard rock, and at quiet places, noise is strongly increased during the operation itself and the installation of sensors in deep wells is costly and often not feasible. The combination of small-aperture seismic arrays with shallow borehole sensors offers a solution. We tested this monitoring approach at two different sites: (1) accompanying a fracking experiment in sedimentary shale at 4 km depth and (2) above a gas field under depletion. The small-aperture arrays were planned according to theoretical wavenumber studies combined with simulations considering the local noise conditions. We compared array recordings with recordings available from shallow borehole sensors and give examples of detection and location performance. Although the high-frequency noise on the 50-m-deep borehole sensors was smaller compared to the surface noise before the injection experiment, the signals were highly contaminated during injection by the pumping activities. Therefore, a set of three small-aperture arrays at different azimuths was more suited to detect small events, since noise recorded on these arrays is uncorrelated with each other. Further, we developed recommendations for the adaptation of the monitoring concept to other sites experiencing induced seismicity.
Czasopismo
Rocznik
Strony
311--326
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
  • University of Potsdam, Potsdam, Germany
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
  • NORSAR, Kjeller, Norway
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
  • University of Potsdam, Potsdam, Germany
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
  • King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
autor
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
autor
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
  • University of Potsdam, Potsdam, Germany
Bibliografia
  • 1. Bassin C (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81: Fall Meet Suppl, Abstract
  • 2. Brodsky E, Lajoie L (2013) Anthropogenic seismicity rates and operational parameters at the Salton sea geothermal field. Science 341(6145):543–546. https://doi.org/10.1126/science.1239,213
  • 3. Castagna J, Batzle M, Eastwood R (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):571–581
  • 4. Cesca S, Grigoli F, Heimann S, González A, Buforn E, Maghsoudi S, Blanch E, Dahm T (2014) The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophys J Int 198(2):941–953
  • 5. Cesca S, López-Comino J, Kühn D, Dahm T (2016) Array in Wittewierum, Netherlands. deutsches geoforschungszentrum gfz. other/seismic network. https://doi.org/10.14470/6P7561560569
  • 6. Deichmann N, Giardini D (2009) Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol Res Lett 80(5):784–798. https://doi.org/10.1875/gssrl.80.5.784
  • 7. Dost B, Ruigrok E, Spetzler J (2017) Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Neth J Geosci 96(5):s235–s245
  • 8. Ellsworth W (2018) Injection-induced earthquakes. Science 341(6142):10.1126/science.1225,942
  • 9. Green C, Styles P, Baptie J (2012) Review and recommendations for induced seismicity mitigation. Preese Hall Shale Gas Fracturing—Induced Seismicity Report pp 1–22
  • 10. Grigoli F, Cesca S, Priolo E, Rinaldi AP, Clinton JF, Stabile TA, Dost B, Fernandez MG, Wiemer S, Dahm T (2017) Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective. Rev Geophys 55(2):310–340
  • 11. Grigoli F, Cesca S, Rinaldi A, Malconi A, López-Comino J, Westaway R, Cauzzi C, Dahm T, Wiemer S (2018) The november 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science 260:1003–1006. https://doi.org/10.1126/science.aat2010
  • 12. Healy J, Rubey W, Griggs D, Raleigh C (1968) The Denver earthquakes. Science 161:1301–1310-351
  • 13. Hiemer S, Rössler D, Scherbaum F (2012) Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array. J Seismol 16:169–182. https://doi.org/10.1007/s10950-011-9256-5
  • 14. Hincks T, Aspinall W, Cooke R, Gernon T (2018) Oklahomas induced seismicity strongly linked to wastewater injection depth. Science 161:10.1126/science.aap7911
  • 15. Hofman L, Ruigrok E, Dost B, Paulssen H (2017) A shallow seismic velocity model for the Groningen area in the Netherlands. J Geophys Res Solid Earth 122(10):8035–8050
  • 16. Horton (2012) Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in Central Arkansas with potential for damaging earthquake. Seismol Res Lett 83(2):doi.org/10.1785/gssrl.83.2.250
  • 17. Karamzadeh N, Heimann S, Dahm T, Krüger F (2018) Application based seismological array design by seismicity scenario modelling. Geophys J Int. https://doi.org/10.1093/gji/ggy523
  • 18. Kim WY (2013) Induced seismicity associated with fluid injections into a deep well in Youngstown, Ohio. J Geophys Res 118(7):3506–3518
  • 19. Kraft T (2016) A high-resolution and calibrated model of man-made seismic noise for Europe. In: 76th Annual meeting of the DGG (German Geophysical Society). Münster, Germany, p 14
  • 20. Kruiver P, van Dedem E, Romijn R, de Lange G, Korff M, Stafleu J, Gunnink J, Rodriguez-Marek A, Bommer J, van Elk J, Doornhof D (2017) An integrated shear-wave velocity model for the Groningen gas field. The Netherlands. Bull Earthq Eng 15(9):3555–3580
  • 21. López-Comino J, Cesca S, Kriegerowski M, Heimann S, Dahm JT, Mirek Lasocki S (2017) Monitoring performance using synthetic data for induced microseismicity by hydrofracking at the Wysin site (Poland). Geophys J Int 210(1):42–55
  • 22. López-Comino J, Cesca S, Jarosławski J, Montcoudiol N, Heimann H, Dahm T, Lasocki S, Gunning A, Capuano P, Ellsworth W (2018) Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland. Sci Rep 20:251–267
  • 23. Matos C, Custódio S, Batló J, Zahradník J, Arroucau P, Silveira G, Heimann S (2018) An active seismic zone in intraplate West Iberia inferred from high-resolution geophysical data. J Geophys Res Solid Earth 123(4):2885–2907
  • 24. Mykkeltveit S, Bungum H (1984) Processing of regional seismic events using data from small-aperture arrays. Bull Seismol Soc Am 74(6):2313–2333
  • 25. Peterson J (1993) Observations and modeling of seismic background noise. US Geological Survey Albuquerque, New Mexico, Tech rep
  • 26. Poggi V, Fäh D (2010) Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations. Geophys J Int 180(1):251–267
  • 27. Ringdal F, Kværna T (1989) A multi-channel processing approach to real time network detection, phase association, and threshold monitoring. Bull Seismol Soc Am 79(6):1927–1940
  • 28. Rost S, Thomas C (2002) Array seismology: methods and applications. Rev Geophys 40(3):1008
  • 29. Rubinstein J, Ellsworth W, McGarr A, Benz H (2014) The 2001-present induced earthquake sequence in the Raton Basin of Northern New Mexico and Southern Colorado. Bull Seismol Soc Am 104(5):10.1785/012,014
  • 30. Sasaki S (1998) Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijori hot dry rock geothermal site. Tectonophysics 289:171–188
  • 31. Schweitzer J, Fyen J, Mykkeltveit S, Gibbons S, Pirli M, Kühn D, Kværna T (2012) New Manual of Seismological Observatory Practice (NMSOP-2). IASPEI, GFZ German Research Centre for Geosciences, chap 9, pp 1–80
  • 32. Sick B, Joswig M (2016) Combining network and array waveform coherence for automatic location: examples from induced seismicity monitoring. Geophys J Int 208(3):1373–1388
  • 33. Spetzler J, Dost B (2017) Hypocentre estimation of induced earthquakes in Groningen. Geophys J Int 209(1):453–465
  • 34. Stipčević J, Kennett BL, Tkalčić H (2017) Simultaneous use of multiple seismic arrays. Geophys J Int 209(2):770–783
  • 35. Tadokoro K, Ando M, Nishigami K (2000) Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: seismicity and its migration. J Geophys Res 105(B3):6089–6104
  • 36. Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performances for ambient vibrations on a shallow structure and consequences over Vss inversion. J Seismol 12(1):1–19
  • 37. Willacy C, van Dedem E, Minisini S, Li J, Blokland J, Das I, Droujinine A (2018) Application of full-waveform event location and moment-tensor inversion for Groningen induced seismicity. Lead Edge 37(2):92–99
  • 38. Zywicki DJ (1999) Advanced signal processing methods applied to engineering analysis of seismic surface waves. Ph.D. thesis, Georgia Institute of Technology
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ac478ff-5545-4b4e-9a99-402a03bdda36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.