PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis of MRASSCC speed estimator in motoring and regenerating mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the stability analysis of MRAS current speed estimator in a motoring and regenerating mode. The unstable operating points of the estimator, mainly in a regenerating mode are widely discussed. The expanded version of the estimator MRASCC is proposed to provide its stability in the whole operating range. The new correction coefficients for two analyzed stabilization methods are proposed. Finally, simulation results confirming the theoretical analysis are presented.
Wydawca
Rocznik
Strony
113--131
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] KAŹMIERKOWSKI M.P., BLAABJERG F., KRISHNAN R., Control in Power Electronic – Selected Problems, Academic Press, USA, 2002.
  • [2] HOLTZ J., Sensorless Control of Induction Machines – With or Without Signal Injection?, IEEE Trans. Industrial Electronics, 2006, 53 (1), 7–30.
  • [3] ORŁOWSKA-KOWALSKA T., Sensorless induction motor drives, Oficyna Wydawnicza PWr, Wrocław 2003, (in Polish).
  • [4] UTKIN V., YAN Z., Sliding mode observers for electronic machines – an overview, Proc. of the 28th Annual Conf. of the Industrial Electronics Society IECON 2002, Sevilla 2002, 3, 2, 1842–1847.
  • [5] BOLDEA I., LASCU C., BLAABJERG F., A class of speed-sensorless sliding-mode observers for highperformance induction motor drives, IEEE Trans. Industrial Electronics, 2009, 56, 9, 3394–3403.
  • [6] KUBOTA H., MATSUSE K., NAKANO T., DSP-based speed adaptive flux observer of induction motor. IEEE Trans. Industry Appl., 1993, 29, 2, 344–348.
  • [7] BOUHENNA A., MANSOUR A., CHENAFA M., BELAIDI A., Feedback Gain Design Method for the Full-Order Flux Observer in Sensorless Control of Induction Motor, International Journal of Computers Communications and Control, 2008, 3, 2, 135–148.
  • [8] BOUHENNA A., CHAIGNE C., BENSIALI N., ETIEN E., CHAMPENOIS G., Design of speed adaptation law in sensorless control of induction motor in regenerating mode, Simulation Modelling Practice and Theory, August 2007, 15, 7, 847–863.
  • [9] ETIEN E., CHAIGNE C., BENSIALI N., On the Stability of Full Adaptive Observer for Induction Motor in Regenerating Mode, IEEE Trans. Ind. Electronics, 2010, 57, 5, 1599–1608.
  • [10] HINKKANEN M., LUOMI J., Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design, IEEE Trans. Ind. Electronics, 2004, 51, 6, 1318–1328.
  • [11] HARNEFORS L., HINKKANEN M., Complete stability of reduced-order and full-order observers for sensorless IM drives, IEEE Trans. Ind. Electronics, 2008, 55, 30, 1319–1329.
  • [12] KUBOTA H., SATO I., TAMURA Y. et al., Regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer, IEEE Trans. Industry Appl., 2002, 38, 4, 1081–1086.
  • [13] SUNWANKAWIN S., SANGWONGWANICH S., Design strategy of an adaptive full-order observer for speed-sensorless induction motor drives – Tracking performance and stabilization, IEEE Trans. Industrial Electronics, 2006, 53, 1, 96–119.
  • [14] ABU-RUB H., OIKONOMOU N., Sensorless observer system for induction motor control, Proc. of the IEEE Power Electronics Specialists Conference, Rodos 2008, 30–36.
  • [15] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., TARCHAŁA G., Analysis of the chosen estimation methods in the induction motor drives – part I – mathematical models, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements, Studies and Research, 2010, 30, 151–161.
  • [16] DYBKOWSKI M., TARCHAŁA G., ORŁOWSKA-KOWALSKA T., Analysis of the chosen estimation methods in the induction motor drives – part II – research tests, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements, Studies and Research, 2010, 30, 162–175.
  • [17] SCHAUDER C., Adaptive speed identification for vector control of induction motors without rotational transducers, IEEE Trans. on Industry Applications, Sept./Oct. 1992, 28, 5, 1054–1061.
  • [18] TAMAI S. et al., Speed sensorless vector control of induction motor with model reference adaptive system, Proc. of IEEE/IAS, 1987, 189–195.
  • [19] PENG F.Z., FUKAO T., Robust speed identification for speed-sensorless vector control of induction motors, IEEE Trans. on Industry Applications, 1994, 30, 5, 1234–1240.
  • [20] PENG F.Z., FUKAO T., LAI J.S., Low-speed performance of robust speed identification using instantaneous reactive power for tacholess vector control of induction motors, Proc. IEEE Industry Applications Society Annual Meetings, 1994, 1, 509–514.
  • [21] SOBCZUK D.L., Application of ANN for control of PWM inverter fed induction motor drives, Ph.D. dissertation, Warsaw Univ. Technol, Warsaw, Poland, 1999.
  • [22] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., Stator current-based MRAS speed estimator for wide range speed-sensorless induction motor drive, IEEE Trans. Ind. Electronics, 2010, 57, 4, 1296–1308.
  • [23] ORŁOWSKA-KOWALSKA T., TARCHAŁA G., Unified approach to the sliding-mode control and state estimation – application to the induction motor drive, Bulletin of the Polish Academy of Sciences. Technical Sciences, 2013, 61, 4, 837–846.
  • [24] VONKOMER J., ZALMAN M., On the stability of current based MRAS, Proc. of the 39th Annual Conf. of the Industrial Electronics Society IECON 2013, Nov. 2013, 3018–3023.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ac3d9a3-6dbe-45f5-91a8-de1a60a5a4e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.