PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quick Response Manufacturing for High Mix, Low Volume, High Complexity Manufacturers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The market of consumer goods requires nowadays quick response to customer needs. As a consequence, this is transferred to the time restrictions that the semi-finished product manufacturer must meet. Therefore the cost of manufacturing cannot determine how production processes are designed, and the main evaluation function of manufacturing processes is the response time to customers’ orders. One of the ideas for implementing this idea is the QRM (Quick Response Manufacturing) production organization system. The purpose of the research undertaken by the authors was to develop an innovative solution in the field of production structure, allowing for the implementation of the QRM concept in a Contract Manufacturer, which realizes its tasks according to engineering-to-order (ETO) system in conditions defined as High Mix, Low Volume, High Complexity. The object of the research was to select appropriate methods for grouping products assuming that certain operations will be carried out in traditional but well-organized technological and/or linear cells. The research was carried out in one of the largest producers of sheet metal components in Europe. Pre-completed groupings for data obtained from the company had indicated that – among the classical methods – the best results had been given by the following methods: King’s Algorithm (otherwise called: Binary Ordering, Rank Order Clustering), k-means, and Kohonen’s neural networks. The results of the tests and preliminary simulations based on the data from the company proved that the implementation of the QRM concept does not have to be associated with the absolute formation of multi-purpose cells. It turned out that the effect of reducing the response time to customer needs can be obtained by using hybrid structures that combine solutions characteristic of cellular systems with traditional systems such as a technological, linear, or mixed structure. However, this requires the application of technological solutions with the highest level of organization.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Management, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Management, Kraków, Poland
  • Addit Sp. z o.o., Wegrow, Poland
Bibliografia
  • Ahi A., Aryanezhad M.B., Ashtiani B., and Makui A. (2009). A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method, Comput. Oper. Res., vol. 36, no. 5, pp. 1478–1496, doi: 10.1016/j.cor.2008.02.012.
  • Andrés C. and Lozano S. (2006). A particle swarm optimization algorithm for part–machine grouping, Robot Comput. Integr Manuf, vol. 22, no. 5–6, pp. 468–474, doi: 10.1016/j.rcim.2005.11.013.
  • Askin R.G. and Standridge C.R. (1993). Modeling and Analysis of Manufacturing Systems, New York, Wiley.
  • Burke L. and Kamal S. (1995). Neural networks and the part family/ machine group formation problem in cellular manufacturing: A framework using fuzzy ART, J. Manuf. Syst., vol. 14, no. 3, pp. 148–159, doi: 10.1016/0278-6125(95)98883-8.
  • Büyüközkan G., Kayakutlu G., and Karakadılar, İ.S. (2015). Assessment of Lean Manufacturing Effect on Business Performance using Bayesian Belief Networks, Expert Syst. Appl., vol. 42, no. 19, pp. 6539– 6551, doi: 10.1016/j.eswa.2015.04.016.
  • Cheng C.H., Gupta Y.P., Lee W.H., and Wong K.F. (1998). A TSP-based heuristic for forming machine groups and part families, Int. J. Prod. Res., vol. 36, no. 5, pp. 1325–1337, doi: 10.1080/002075498193345.
  • Choi S.-S.., Cha S.-H., and Tappert C. (2010). A Survey of Binary Similarity and Distance Measures, Systemics, Cybernetics and Informatics, vol. 8, no. 1.
  • Domański R. and Hadaś Ł., (2008). Technological and Organizational Similarity Coefficient as a Basis for Value Streams in Lean Production, LogForum, vol. 4, no. 2, p. 8.
  • Domański R. and Fertsch M. (2015). Integration of Production and Supply in the Lean Manufacturing Conditions According to The Lot for Lot Method Logic – Results of Research, LogForum, vol. 11, no. 4, pp. 351–358.
  • Dos Santos D.A. and Deutsch R. (2010). The Positive Matching Index: A new similarity measure with optimal characteristics, Pattern Recognit. Lett., vol. 31, no. 12, pp. 1570–1576, doi: 10.1016/j.patrec.2010.03.010.
  • Fernandes N.O. and Do Carmo-Silva S. (2006). Generic POLCA—A production and materials flow control mechanism for quick response manufacturing, Int. J. Prod. Econ., vol. 104, no. 1, pp. 74–84, doi: 10.1016/j.ijpe.2005.07.003.
  • Forghani K., Mohammadi M., and Ghezavati V. (2014). Integrated cell formation and layout problem considering multi-row machine arrangement and continuous cell layout with aisle distance, Int. J. Adv. Manuf. Technol., vol. 78, no. 5–8, pp. 687–705, doi: 10.1007/s00170-014-6652-3.
  • Foulds L.R., French A.P., and Wilson J.M. (2006). The sustainable cell formation problem: manufacturing cell creation with machine modification costs, Comput. Oper. Res., vol. 33, no. 4, pp. 1010–1032, doi: 10.1016/j.cor.2004.09.001.
  • Godinho Filho M. and Veloso Saes E. (2013). From timebased competition (TBC) to quick response manufacturing (QRM): the evolution of research aimed at lead time reduction, Int. J. Adv. Manuf. Technol., vol. 64, no. 5, pp. 1177–1191, doi: 10.1007/s00170- 012-4064-9.
  • Gunther H.O. and Tempelmeier H. (2016). Produktion und Logistik: Supply Chain und Operations Management, Nordestedt: Books on Demand.
  • Gupta N.S., Devika D., Valarmathi B., Sowmiya N., and Shinde A. (2014). CARI – a heuristic approach to machine-part cell formation using correlation analysis and relevance index, Int. J. Prod. Res., vol. 52, no. 24, pp. 7297–7309, doi: 10.1080/00207543.2014.922709.
  • James T.L., Brown E.C., and Keeling K.B. (2007). A hybrid grouping genetic algorithm for the cell formation problem, Comput. Oper. Res., vol. 34, no. 7, pp. 2059–2079, doi: 10.1016/j.cor.2005.08.010.
  • King J.R. (1980). Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm, Int. J. Prod. Res., vol. 18, no. 2, pp. 213–232, doi: 10.1080/00207548008919662.
  • Lee K. and Ahn K.-I. (2013). GT efficacy: a performance measure for cell formation with sequence data, Int. J. Prod. Res., vol. 51, no. 20, pp. 6070–6081, doi: 10.1080/00207543.2013.794317.
  • Ng S.M. (1993). Worst-case analysis of an algorithm for cellular manufacturing, Eur. J. Oper. Res., vol. 69, no. 3, pp. 384–398, doi: 10.1016/0377- 2217(93) 90023-g.
  • Offodile O.F. (1991). Application of similarity coefficient method to parts coding and classification analysis in group technology, J. Manuf. Syst., vol. 10, no. 6, pp. 442–448, doi: 10.1016/0278-6125(91)90002-j.
  • Onyeocha C.E., Khoury J., and Geraghty J. (2015). Evaluation of multi-product lean manufacturing systems with setup and erratic demand, Comput. Ind. Eng., vol. 87, pp. 465–480, doi: 10.1016/j.cie.2015.05.029.
  • Papaioannou G. and Wilson J.M. (2010). The evolution of cell formation problem methodologies based on recent studies (1997–2008): Review and directions for future research, Eur. J. Oper. Res., vol. 206, no. 3, pp. 509–521, doi: 10.1016/j.ejor.2009.10.020.
  • Prabhaharan G., Asokan P., Girish B.S. and Muruganandam A. (2004). Machine cell formation for cellular manufacturing systems using an ant colony system approach, Int. J. Adv. Manuf. Technol., vol. 25, no. 9–10, pp. 1013–1019, doi: 10.1007/s00170-003-1927-0.
  • Safaei N., Saidi-Mehrabad M., Tavakkoli-Moghaddam R., and Sassani F. (2008). A fuzzy programming approach for a cell formation problem with dynamic and uncertain conditions, Fuzzy Sets Syst., vol. 159, no. 2, pp. 215–236, doi: 10.1016/j.fss.2007.06.014.
  • Selim H.M., Askin R.G., and Vakharia A.J. (1998). Cell formation in group technology: Review, evaluation and directions for future research, Comput. Ind. Eng., vol. 34, no. 1, pp. 3–20, doi: 10.1016/S0360-8352(97)00147-2.
  • Setlak G. (2003). Zastosowanie sieci neuronowych Kohonena w projektowaniu modułowej technologii montażu, Technol. i Autom. Montażu, vol. 2003, no. 4, pp. 2–5.
  • Shah R. (2003). Lean manufacturing: context, practice bundles, and performance, J. Oper. Manag., vol. 21, no. 2, pp. 129–149, doi: 10.1016/S0272-6963(02)00108-0.
  • Souilah A. (1995). Simulated annealing for manufacturing systems layout design, Eur. J. Oper. Res., vol. 82, no. 3, pp. 592–614, doi: 10.1016/0377-2217(93)E0336-V.
  • Spiliopoulos K. and Sofianopoulou S. (2003). Designing manufacturing cells: A staged approach and a tabu search algorithm, Int. J. Prod. Res., vol. 41, no. 11, pp. 2531–2546, doi: 10.1080/0020754031000088156.
  • Stalk G. Jr. (1988). Time-The Next Source of Competitive Advantage, vol. 66.
  • Stawowy A. (2006). Evolutionary strategy for manufacturing cell design, Omega, vol. 34, no. 1, pp. 1–18, doi: 10.1016/j.omega.2004.07.016.
  • Suri R. (1998). Quick Response Manufacturing. A Companywide Approach to Reducing Lead Times, Productivity Press.
  • Suri R. (2010). It’s About Time. The Competitive Advantage of Quick Response Manufacturing, Productivity Press.
  • Susanto S., Kennedy R.D., and Price J.W.H. (1999). A new fuzzy-c-means and assignment techniquebased cell formation algorithm to perform part-type clusters and machine-type clusters separately, Prod. Plan. Control, vol. 10, no. 4, pp. 375–388, doi: 10.1080/095372899233127.
  • Wemmerlöv U. and Hyer N. (1989). Cellular Manufacturing in the U.S. Industry: A Survey of Users. vol. 27.
  • Won Y. and Lee K.C. (2001). Group technology cell formation considering operation sequences and production volumes, Int. J. Prod. Res., vol. 39, no. 13, pp. 2755–2768, doi: 10.1080/00207540010005060.
  • Wu X., Chu C.-H., Wang Y., and Yan W. (2007). A genetic algorithm for cellular manufacturing design and layout, Eur. J. Oper. Res., vol. 181, no. 1, pp. 156– 167, doi: 10.1016/j.ejor.2006.05.035.
  • Yang M.-S. and Yang J.-H. (2008). Machine-part cell formation in group technology using a modified ART1 method, Eur. J. Oper. Res., vol. 188, no. 1, pp. 140–152, doi: 10.1016/j.ejor.2007.03.047.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ac396c8-7f19-4031-a575-54fd1dc5790d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.