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Abstract 
 

Optimal design of geodetic network is a basic subject of many engineering 
projects. An observation plan is a concluding part of the process. Any 
particular observation within the network has through adjustment a different 
contribution and impact on values and accuracy characteristics of 
unknowns. The problem of optimal design can be solved by means of 
computer simulation. This paper presents a new method of simulation 
based on sequential estimation of individual observations in a step-by-step 
manner, by means of the so-called filtering equations. The algorithm aims 
at satisfying different criteria of accuracy according to various 
interpretations of the covariance matrix. Apart of them, the optimization 
criterion is also amount of effort, defined as the minimum number of 
observations required. 
A numerical example of a 2-D network is illustrated to view the 
effectiveness of presented method. The results show decrease of the 
number of observations by 66% with respect to the not optimized 
observation plan, which still satisfy the assumed accuracy. 
 

Keywords: optimization, observation plan, horizontal network, cost,  
accuracy, covariance matrix, sequential adjustment 

 
1. Introduction 

 
Horizontal geodetic network is a collection of points connected by observations, that 
make up a specific geometric structure (Adamczewski, 2007). A network composition 
can be seen in terms of a class diagram of the Unified Modelling Language (UML), 
which is a modern tool for describing any information structure (Quatrani, 2003). This 
is showed in Figure 1, on which different entities of a network are linked together 
through specific relationships, such as association (simple line), navigation (line with 
an arrow), aggregation (line with a diamond) and specialization (line with a triangle); 
other entities as attributes, constraints, etc., are here omitted. Among the entities the 
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most one is a reference frame (a datum), which decides on a definitive localization of 
the network points in space, and a variance – covariance matrix, or a cofactor matrix, 
which specifies relevant stochastic characteristics of the whole network, as well as of 
its individual segments.  
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Fig. 1. Conceptual model of geodetic network. 

 
A well designed network should meet required accuracy or/and reliability criteria, 

achieved at a low cost, by limiting the number of measuring stations and 
observations. Optimization of observation plan consists in searching for such  
a solution. Different optimization problems are defined into different orders. 
Grafarend (1974) identified four optimization orders: 

1. Zero-Order Design (ZOD): design the reference system; 
2. First-Order Design (FOD): design of the network configuration (also observation 

plan); 
3. Second-Order Design (SOD): selection of appropriate weights for the 

observations; 
4. Third-Order Design (TOD): extending or densifying an existing network by 

introducing additional points and/or additional observations. 

Optimization of observation plan is the issue of FOD, and can be solved i.a. by the 
computer simulation. The main goal of this solution, is to solve the design problem by 
sequentially adding or subtracting selected observations, until a satisfactory network 
is found (Cross, 1985). Of the previously mentioned methods based on this solution, 
the most distinguishable are Nickerson (1979), Frank and Misslin (1980), Cross and 
Whiting (1981) Mepham (1983), Nowak (1985) or Chang (1996). Despite the fact that 
each of these methods is based on a different optimization strategy, adding or 
deleting an observation still depends on its weight. The main purpose of this paper is 
to present a different strategy of computer simulation, which is based on a sequential 
estimation. The strategy to be discussed uses the properly defined point accuracy 
and amount of measurement effort (equivalent to measurement costs) as 
optimization criteria. 
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(1) 

(2) 

2. Accuracy characteristics 
 

2.1. The Gauss – Markov functional model 
 

First, we consider the so-called datum problem within the Gauss – Markov functional 
model without a priori information: 

Axvl   
 

with the weight matrix P. The model (1) is subject to the least squares principle:  
 

minPvvT   
where: 

)mn(
A


 – design matrix, 

)nn(
P


 – weight matrix of observations, 

)mm(
x


 – vector of unknown parameters, 

)1n(
l


 – a vector of observations 

)1n(
v


- the vector of the least squares corrections, 

 
Here, the vector of parameters x , rather stands for small corrections to approximate 
values of station coordinates than the coordinates themselves. In  
a geodetic network the parameters x are usually point coordinates in one, two or 
three dimensions, while observations (measurements) l are usually height 
differences, angles (horizontal and/or vertical), and/or distances1. The point 
coordinates are to be inferred from a reference frame, or a datum, which defines, for 
the relevant network, proper coordinate system consisting of the origin, orientation 
and scale elements (Table 1). 

 
Table 1. Number of elements required for complete definition of the datum (numbers in 

brackets correspond to the cases when scale is defined separately). 

Dimension 
Datum elements 

Origin Orientation Scale Total 

D-1 1 - 1 2 (1) 

D-2 2 1 1 4 (3) 

D-3 3 3 1 7 (6) 

 
 As the considered observation types do not contain complete information on 
datum elements, the missing information in the model (1) cannot be solved uniquely 
for the parameters x. This appears as the linear dependence of columns of the 
design matrix A and causes the singularity of the normal equations matrix ATPA, with 
det(ATPA) = 0. The normal equations matrix is not considered here as of the full rank, 
but as a rank deficient with the rank defect d>0 , where: 

                                                           
1
 In this analysis we disregard other types of observations, such as GNSS ones, which require a separate approach. 
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(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

u)PAA(rd T   

and u is the number of undefined elements of the reference frame (the datum), see 
Table 1. This is the datum problem which consists in providing some additional 
information to resolve the rank defect to arrive at d=0. This can be done either 
through supplementary observations to link the existing network points to other points 
of known positions within the given datum, or through adopting some a priori 
constraints on the unknown parameters x.  

Following Caspary (1987) we may request that any datum definition shall impose 
no strain on the network, so that it shall not affect the network geometry. The desired 
equation is equivalent to the requirement that relative positions of the points should 
result solely from the basic observations. In the following we assume the rank defect 
due to the datum problem has been removed, so that we have a regular normal 
equations matrix which leads to a unique cofactor matrix: 

 
1T

x )PAA(Q   

 
2.2. Specific accuracy characteristics 
 
All accuracy characteristics of a network are embedded in its variance – covariance 
matrix: 

x

2

0x QQ̂   

in which vector of unknowns x and its cofactor matrix Qx are given through the well-
known solution of normal equations, resulting from (2):  
 

x = (ATPA)-1ATPl 
with  

1T

x )PAA(Q   

provided that there is no datum defect, so that d=0. We have also 

un

PvvT
2

0


  

Any chosen network accuracy characteristics may refer either to the matrix 
xQ̂  as a 

whole, or to any its diagonal submatrix  
xQ̂ , not necessarily consistent, being also a 

variance – covariance matrix representing a specific “sub-net” of the given network 
with columns and rows relevant to 1-D, 2-D or 3-D coordinates of network points. 
This is roughly illustrated in Figure 2. Further we denote the variance – covariance 

matrix or any of its sub-matrices by Q̂ . 

Any matrix Q̂  defines an r-dimensional hyper-ellipsoid (an ellipse in 2-D, an 
ellipsoid in 3-D) in the space of the parameters x through the equation: 

1xQ̂x 1T   
with r(Q) = r as the rank of Q.  
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(10) 

(11) 

(12) 

 

Fig. 2. The variance-covariance matrix and some of its diagonal submatrices. 

 
 

Then among the accuracy characteristics of the network are: 

 lengths of the hyper-ellipsoid semi-axes: 

r321 ......,,c,b,a   , 

 orientation of the semi-axes given by the matrix: 

 r321 w...wwwW   

where i  and iw , )r,...,2,1i(  , are eigenvalues and eigenvectors of Q̂  

satisfying the equations: 

  0IQ̂det     0wIQ̂ ii   

it is worth to note that i  and iw  are invariant with linear transformations of x. 

 other accuracy characteristics: 

ixq


 - variance of a single parameter, 

 i)Q̂tr(  - generalized Helmert’s point position error, 

 i)Q̂det(  - generalized hyper-ellipsoid volume (accurate to a constant 

     factor), 

max

min




  - conditional number. 
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(13) 

(14) 

3. Optimization algorithm 
 

In the theory of sequential estimation based on Kalman filter there are equations that 
update covariance matrix by adding new observations. The equations, commonly 
known as filtering equations, were derived in the works of Lee (1964) and Pachelski 
(1972). The equations have form:  

 for equally weighted observations: 

k

T1

k

T

kkk C)1C(CCC  

  

 for not equally weighted observations:  

k

T12

k

T

kkk C)C(CCC  

  

where  

Ck+α –the covariance matrix updated by a single observation 
Ck – the output covariance matrix 
α – coefficients of the new observation equation 
σ – observation mean error. 
 

The advantage of this method is the acceleration of the calculation process. In 
next addition to the filtering algorithm we also need a strategy for adding subsequent 
observations, which will allow to exam the impact of each individual observation on 
the covariance matrix. This strategy, in the form of a UML diagram is shown in the 
Figure 3. In the first stage of optimization process, we enter approximate location of 
points (measuring stations and reference system) and define the value of accuracy 
criterion. The next step is generation of the output covariance matrix Ck, which is the 
zero-diagonal matrix with very large variance (theoretically should be infinity), 
crippled the highest possible defect, provided for horizontal network. The strategy of 
adding observations is based on a specially programed loop, which allows for using a 
filter equation to create a potential observation plans in different configurations. In 
each configuration, the impact of added observations on covariance matrix is 
analyzed. The configuration where the accuracy criterion is fulfilled with the minimum 
number of observations would be the optimal plan. 

 
4. Numerical test 

 
Below is an example demonstrating the optimization of an observation plan 
according to the discussed algorithm. The algorithm reduces the number of angular 
and distance observations in a horizontal control network of a railway viaduct . The 
required accuracy for point positions is mp = ±1cm, while the rms errors of distance 
measurements is md = 1cm + 1ppm×D and that of angular measurements is mα = 
10cc. The assumption was also centering rms errors of a measuring station equal ms 
= ±3mm and those of a target equal mc = ±5mm. The results of the optimization 
process clearly indicate a significant reduction of the number of observations without 
degradation of the required point position accuracy.  

A sketch of the network before optimization is shown in Fig. 4 and after the 
optimization in Fig. 5, while the corresponding covariance matrices are given in 
Tables 2 and 3. Table 4 gives numbers of observations of both types before and after 
the optimization. 
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Fig. 3. Conceptual model optimization strategy. 
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Fig. 4. A layout of the network before optimization 

 
 
 
 

Table 2. Covariance matrix of analyzed network before optimization 
 

0,046 -0,002 0,002 -0,002 -0,001 -0,001 0,000 0,000 0,001 -0,001 0,000 -0,001 0,003 0,000 

-0,002 0,057 0,001 0,002 0,001 0,003 0,003 0,000 0,001 0,002 0,001 0,003 0,000 0,000 

0,002 0,001 0,043 -0,005 0,023 -0,003 0,004 -0,001 0,006 0,001 0,028 0,004 0,005 -0,003 

-0,002 0,002 -0,005 0,058 -0,005 0,010 -0,001 0,008 0,005 0,017 -0,001 0,016 -0,002 0,007 

-0,001 0,001 0,023 -0,005 0,043 0,002 0,004 -0,001 0,005 -0,004 0,025 -0,006 0,003 -0,002 

-0,001 0,003 -0,003 0,010 0,002 0,071 0,002 0,004 0,005 0,016 -0,007 0,029 0,002 0,003 

0,000 0,003 0,004 -0,001 0,004 0,002 0,072 -0,002 0,002 0,000 0,004 0,000 0,001 0,002 

0,000 0,000 -0,001 0,008 -0,001 0,004 -0,002 0,029 0,001 0,002 -0,001 0,004 0,001 0,000 

0,001 0,001 0,006 0,005 0,005 0,005 0,002 0,001 0,064 0,011 0,008 0,010 0,004 -0,002 

-0,001 0,002 0,001 0,017 -0,004 0,016 0,000 0,002 0,011 0,058 0,002 0,029 0,001 0,005 

0,000 0,001 0,028 -0,001 0,025 -0,007 0,004 -0,001 0,008 0,002 0,048 0,004 0,005 -0,002 

-0,001 0,003 0,004 0,016 -0,006 0,029 0,000 0,004 0,010 0,029 0,004 0,067 0,001 0,005 

0,003 0,000 0,005 -0,002 0,003 0,002 0,001 0,001 0,004 0,001 0,005 0,001 0,050 0,000 

0,000 0,000 -0,003 0,007 -0,002 0,003 0,002 0,000 -0,002 0,005 -0,002 0,005 0,000 0,068 
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Fig. 5. A layout of the network after optimization 

 
Table 3. Covariance matrix of analyzed network after optimization 

 
0,620 0,001 0,001 -0,012 -0,006 -0,005 -0,003 0,000 -0,001 -0,001 -0,003 -0,002 0,004 0,000 

0,001 0,750 0,003 0,001 0,005 0,002 0,002 0,000 0,001 -0,002 0,003 -0,001 0,003 -0,014 

0,001 0,003 0,930 -0,007 0,061 0,021 0,009 0,000 0,007 -0,005 0,066 0,016 0,002 0,000 

-0,012 0,001 -0,007 0,268 0,024 0,062 0,002 0,014 0,021 0,035 0,021 0,055 0,004 0,001 

-0,006 0,005 0,061 0,024 0,123 0,066 0,009 0,001 0,008 -0,021 0,067 -0,005 -0,003 0,001 

-0,005 0,002 0,021 0,062 0,066 0,206 0,000 0,004 0,028 0,043 0,016 0,083 0,005 0,003 

-0,003 0,002 0,009 0,002 0,009 0,000 0,125 0,007 0,000 -0,002 0,007 0,000 -0,005 0,011 

0,000 0,000 0,000 0,014 0,001 0,004 0,007 0,50 0,001 0,002 0,001 0,003 0,002 -0,003 

-0,001 0,001 0,007 0,021 0,008 0,028 0,000 0,001 0,108 0,038 0,013 0,037 0,007 -0,010 

-0,001 -0,002 -0,005 0,035 -0,021 0,043 -0,002 0,002 0,038 0,126 -0,002 0,082 0,012 0,006 

-0,003 0,003 0,066 0,021 0,067 0,016 0,007 0,001 0,013 -0,002 0,880 0,015 0,005 -0,003 

-0,002 -0,001 0,016 0,055 -0,005 0,083 0,000 0,003 0,037 0,082 0,015 0,144 0,008 0,009 

0,004 0,003 0,002 0,004 -0,003 0,005 -0,005 0,002 0,007 0,012 0,005 0,008 0,117 -0,053 

0,000 -0,014 0,000 0,001 0,001 0,003 0,011 -0,003 -0,010 0,006 -0,003 0,009 -0,053 0,185 

 
 

Table 4. A quantitative observation list 
 

 Before optimization After optimization Difference [%] 

Distance 83 28 66% 

Angles 104 47 55% 
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5. Conclusions 
 

 The method allows to eliminate those observations, which due to the geometry 
of the network and the optimization criteria have minor contribution to the final 
point position accuracy; 

 As an optimization criteria any accuracy characteristic resulting from the 
variance – covariance matrix can be taken into account; 

 According to the algorithm, any observation can be analyzed with respect to 
its impact on the variance - covariance matrix; 

 The method can be used in conjunction with any other optimization criteria 
such as for example the coefficient of reliability. 
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