PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porównanie numerycznych modeli terenu SRTM i ASTER GDEM oraz ocena możliwości ich wykorzystania w modelowaniu hydrologicznym w obszarach o małych deniwelacjach

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Comparison of Digital Elevation Models SRTM and ASTER GDEM and Evaluation of the Possibility of Their Use in Hydrological Modeling in Areas of Low Drop
Języki publikacji
PL
Abstrakty
EN
The article compares the accuracy of two digital elevation models Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model. Models were assessed in the context of possibility of their usage in hydrological modeling in the areas of low drop. The object of analysis is located in the agglomeration of Poznań. Detailed study sites were the catchment area of Junikowski Stream and catchment area of Tributary from Dopiewiec. The study used data from two free DEMs: SRTM, ASTER and as a reference, DEM model generated from the contour lines and elevation points from Vector Map Level 2 (VMAP L2). Analyses were performed using Free Open Source Software, Quantum GIS ver. Wroclaw and GRASS 1.7.4 ver. 6.4.2. Data analysis were also performed in spreadsheets in Microsoft Office Excel 2007. Hydrological analysis were conducted in r.watershed GRASS module. In the second part of the paper, for the comparative analysis, data from Raster Hydrographical Map of Poland was adopted. Research showed that the average difference occurring between the analyzed models are not significant, however, a large number of artifacts in the models can influence on the results of the hydrological analysis. It has been calculated that the SRTM model is more accurate than the ASTER data even though the ASTER model input resolution is higher. The results revealed that the SRTM is closer to the reference model. It should also be noted that used reference DEM, may contain errors. In the small catchments with low drop, catchment boundaries and river networks generated from the DEMs may contain errors affecting the results of the hydrological modeling. Using available and free DEMs (SRTM and ASTER) to generate catchment boundaries and streams networks, the results must be verified basing on field measurements or it has to be made on the basis of greater resolution data, e.g. from Airborne Laser Scanning LIDAR (Light Detection and Ranging). Due to the errors in the tested models it is not recommended to use data, especially from the ASTER, for large-scale studies in the areas of small drop. SRTM and ASTER DEMs, however are a valuable material for analysis in small and medium scales. Data from the analyzed models is a valuable source of information about the terrain and can be successfully used for the geomorphological and landscape analysis.
Słowa kluczowe
Rocznik
Strony
1489--1510
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
Bibliografia
  • 1. Abrams M.: ASTER: data products for the high spatial resolution imager on NSA’s EOS-AM1 platform. International Journal of Remote Sensing, 21, 848–861 (2000).
  • 2. Forkuor G., Maathuis B.: Comparison of SRTM and ASTER Dericed Digital Elevation Models over Two Regions in Ghana – Implications for Hydrological and Environmental Modeling. Studies on Environmental and Applied Geomorphology, InTech, 219–240 (2012).
  • 3. Hengl T., Evans I.S.: Mathematical and Digital models of the Land Surface. w Geomorphometry: concepts, software, application pod redakcją Reuter H. I., Elsevier, Amsterdam, 2009.
  • 4. http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Eurasia/
  • 5. http://www.jspacesystems.or.jp/ersdac/GDEM/E/2.html
  • 6. Jarvis A., Rubiano J., Nelson A., Farrow A., Mulligan M.: Practical use of SRTM data in tropics – Comparisons with digital elevation models generated from cartographic data. Working Document No. 198, Cali Columbia, 32 (2004).
  • 7. Kamp U., Bolch T., Olsenholler J.: DEM Generation from ASTER Satellite Data for Geomorphometric Analysis of Cerro Sillajhuay, Chile/Bolivia. ASPRS 2003 Annual Conference Proceedings, Anchorage, 2003.
  • 8. Karwel A. K., Ewiak I.: Ocena dokładności modelu SRTM na obszarze Polski. Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol.16, 289–296 (2006).
  • 9. Kondracki J.: Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa, 2002.
  • 10. Krygowski B.: Geografia fizyczna Niziny Wielkopolskiej. Część 1. Geomorfologia. Poznańskie Towarzystwo Przyjaciół Nauk, Poznań, 1961.
  • 11. Kurczyński Z.: Lotnicze i satelitarne obrazowanie Ziemi. Tom 2. Wydawnictwo Politechniki Warszawskiej, Warszawa, 2006.
  • 12. Nelson A., Reuter H.I., Gessler P.: DEM Production methods and sources. w Geomorphometry: concepts, software, application pod redakcją Reuter H. I., Elsevier, Amsterdam, 2009.
  • 13. Nering K.: System GRASS – możliwości i zastosowania. Cześć 2. Czasopismo Techniczne Politechniki Krakowskiej. 2-Ś/2011, 170–182 (2011).
  • 14. Netzl P. (red).: Analizy przestrzenne z wykorzystaniem GRASS. Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego 15, Uniwersytet Wrocławski, Wrocław, 53–59 (2011).
  • 15. Przybyła Cz., Bykowski J., Mrozik K., Napierała M.: Rola infrastruktury wodno-melioracyjnej w procesie suburbanizacji. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 769–786 (2011).
  • 16. Rozporządzenie Rady Ministrów z dnia 15 października 2012 roku w spra¬wie państwowego system odniesień przestrzennych (Dz. U. z 2012 poz. 1247).
  • 17. Sanecki J.: Teledetekcja pozyskiwanie danych. Wydawnictwo Naukowo Techniczne, Warszawa, 2006.
  • 18. Slater J. A., Heady B., Kroenung G., Curtis W., Haase J., Hoegmann D., Shockley C., Kevin T.: Evaluation of New ASTER Global Digital Elevation Model. Avalible online at: http://earth-info.nga.mil/ GandG/elevation/
  • 19. Tang C.: Surface water hydrologic simulation of Qingshuijiang Watershed based on SRTM DEM. Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Geo-Simulation and Virtual GIS Environments, 2008.
  • 20. Walker J.P., Willgoose G.R.: On the effect of Digital elevation model accuracy on hydrology and geomorphology. Water Resources Research. 35. 2259–2268.
  • 21. Wise S.: Assessing the quality for hydrological applications of Digital elevation models derived from contours. Hydrological Processes, 14, 1909–1929 (2000).
  • 22. Yamaguchi Y., Kahle A., Tsu H., Kawakami T., Pniel M.: Overview of Advanced Spaceborne Thermal Emission ond Reflection Radiometer (ASTER). Geoscience and Remote Sensing 36, 1062–1071 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ac30519-6f75-473c-9fba-6306aa4ea50e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.