PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of nitrogen oxides from flue gas by ozonation method

Identyfikatory
Warianty tytułu
PL
Usuwanie tlenków azotu ze spalin metodą ozonowania
Języki publikacji
EN
Abstrakty
EN
In Poland since 01.01.2016 enter into force the records of Industrial Emissions Directive (IED), which increasing the rate of installing flue gas denitrification devices (deNOx). Among the methods of limiting emissions of nitrogen oxides it is recommended to use cooperation of primary methods of reducing NOx emissions and recognized as BAT (Best Available Technology) methods SCR (Selective Catalytic Reduction) and SNCR (Selective Non-Catalytic Reduction) [1]. An alternative to the methods based on the ammonia use may become a method of NOx pre-oxidation. The method presented in the paper is based on oxidation by ozone the NOx and absorption of the oxidation products together with SO2 in absorber of WFGD system (Wet Flue Gas Desulfurization). In the paper the results of contamination removal efficiency based on the pilot-plant studies were presented. The pilot-plant was localized on the terrain of ZEC “Cogeneration” Wrocław. The results of these studies formed the basis of the preliminary draft of exhaust gas ozonation system for a coal-fired unit. The ozonation installation has to clean exhaust gases from SO2 and NOx to the level required by IED directive. Due to the widely use of the 200 MWe units in the Polish electric energy generating system one of such unit with the boiler OP 650 was selected for the design of deNOx system based on the ozonation method. It was assumed that the ozonation installation will be combined with the WFGD system operating on limestone. In the frame of the project demands for media and devices for deNOx and deSOx installations were calculated, and an economic analysis was conducted. The obtained results were compared with available data concerned to the SCR technology.
PL
Obowiązywanie w Polsce limitów emisji SO2, NOx i pyłów od 01.01.2016 roku zgodnych z dyrektywą IED (Industrial Emission Directive) wzmogło tempo instalowania urządzeń odazotowania spalin (deNOx). Wśród przedsięwzięć ograniczających emisję tlenków azotu zaleca się stosowanie współdziałania metod pierwotnych redukcji emisji NOx oraz uznanych za BAT metod SCR (Selective Catalic Reduction) i SNCR (Selective Non-Catalic Reduction) [1]. Alternatywą dla metod amoniakalnych może stać się metoda wstępnego utleniania NOx ozonem z absorpcją produktów utleniania razem z SO2 w absorberze MIOS (Mokra Instalacja Odsiarczania Spalin), którą prezentuje się w pracy. W pracy przedstawiono wyniki pomiarów skuteczności usuwania zanieczyszczeń ze spalin metodą ozonowania wykonane w skali pilotowej na obiekcie zlokalizowanym na terenie ZEC „Kogeneracja” Wrocław. Wyniki tych badań stanowiły podstawę do opracowania wstępnego projektu instalacji oczyszczania spalin dla kotła zasilanego węglem kamiennym. Instalacja ozonowania miała za zadanie oczyścić spaliny z tlenków azotu oraz dwutlenku siarki do poziomu gwarantowanego przez zapisy dyrektywy IED. Ze względu na powszechność stosowania w Polskiej energetyce bloków o mocy 200 MW, do projektu wybrano blok z kotłem OP-650. Instalacja ozonowania będzie współpracować z instalacją mokrego odsiarczania spalin. W ramach projektu wykonano obliczenia zapotrzebowania instalacji na tlen i ozon oraz wykonano analizę ekonomiczną. Otrzymane wyniki porównano z dostępnymi danymi literaturowymi dotyczącymi instalacji SCR.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
119--124
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
autor
  • Wrocław University of Technology, Faculty of Mechanical and Power Engineering
  • Wrocław University of Technology, Faculty of Mechanical and Power Engineering
  • Wrocław University of Technology, Faculty of Mechanical and Power Engineering
Bibliografia
  • [1] Directive of European Parliament and the Council of 24 November 2010. On industrial emissions (integrated pollution prevention and control) (Dz.U. 2010, L 334).
  • [2] E. Stamate, L. Jorgensen, T. K. Jensen, W. Chen, P. G. Kristensen, L. Tobiasen, P. Simonsen, P. K. Michelsen: Pilot test and optimization of plasma based DeNOx, Final Report PSO project No. 2006-1-6365.
  • [3] Carpenter A. M., Advances in multi-pollutant control, IEA CLEAN COAL CENTRE, 11.2013
  • [4] T. Yamamoto, M. Okubo, K. Hayakawa, and K. Kitaura: Towards Ideal NOx Control Technology using a Plasma-Chemical Hybrid Process. IEEE Transactions on Industry Applications, Vol. 37, No.5, Sept./Oct. 2001, pp. 1492-1498.
  • [5] Nelo S.K.,Leskela K.M.,Sohlo J.J.K.: Simultaneous oxidation of nitrogen oxide and sulfur dioxide with ozone and hydrogen peroxide, Chem. Eng. Technol., 1997, 20, 40.
  • [6] Jaroszyńska-Wolińska J.: Investigations of the chemical reactions of nitrogen oxides with ozone generated in low-temperature plasma, Institute of Chemistry and Nuclear Technology, Warsaw 2009 (in Polish).
  • [7] Wang Z.,Zhou J.,Zhu Y.,Wen Z.,Liu J.,Cen K.: Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection. Experimental results, Fuel Process. Technol., 2007, 88, 817.
  • [8] Omar K.: Evaluation of BOC’s Lotox process for the oxidation of elemental mercury in flue gas from a coal-fired boiler, Topical report for Linde Group and U.S. Department of Energy by Western Research Institute (WRI-08-RO10), 2008.
  • [9] A pioneering NOx removal technology for the power industry, Modern Power Systems, may 2015.
  • [10] M. Okubo, T. Kuroki, K. Kitaura and T. Yamamoto: Diesel Engine Emission Control Using Pulsed Corona Plasma-Chemical Hybrid Process, Journal of Environment and Engineering, JSME Electric Journal, 1-1, (2006) pp.29-38.
  • [11] Fujishima H., Kuroki T., Tatsumi A., Okubo M., Otsuka K., Yamamoto T., Yoshida K.: Performance charakteristics of pilot-scale NOx removal from boiler emissions using plasma-chemical proces, IEEE Transactions on industry applications, VOL. 46, NO. 1, January/February 2010.
  • [12] Głomba M., Kordylewski W.: Simultaneous removal of NOx, SO2, CO and Hg from flue gas by ozonation. Pilot plant studies, Environment Protection Engineering, 2014, vol. 40, nr 3, pp.113-125.
  • [13] Kuropka J.: Technologies of gas treatment from sulphur dioxide and nitrogen oxides, Wrocław University of Technology, Wrocław 2012 (in Polish).
  • [14] Sander R.: Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, Air Chemistry Department, Max-Planck Institute of Chemistry, PO Box 3060, 55020 Mainz, Germany.
  • [15] The technical report for the period 01.05.2011 - 30.04.2012, Theme 1 - VI.2: Development and experimental verification (including real objects) concept desulphurisation efficiency, no and name the checkpoint 1 -VI.2. b: research to reduce emissions of NOx and SO2 emissions to 30 mg / m3 dust <5 mg / m3 for 6% O2 and Hg <0.5 mg / m3 for 6% O2.
  • [16] Głowiński J., Biskupski A., Słonka T., Tylus W.: Absorption of nitrogen oxides at the final stage of ammonium nitrite production. Chem. Process Eng., 2009, 30, 217-229.
  • [17] E. I. Intezarova, V. N. Kondrat'ev: Thermal decomposition of ozone, Bulletin of the Academy of Sciences of the USSR, Division of chemical science, November 1967, Volume 16, Issue 11, pp 2326-2331.
  • [18] Jones W., Davidson N.: The Thermal Decomposition of Ozone in a Shock Tube, J. Am. Chem. Soc., 1962, 84 (15), pp 2868–2878.
  • [19] Zhou, N., Krishnan, A., Kudriatsev, V., Brichko, Y.: 1997. Numerical study of TEOS/O3TEOS/O3 CVD mechanisms in an industrial reactor. Fifth International Conference on Advanced Thermal Processing of Semiconductors, RTP’97. New Orleans, LA, USA, pp. 257–268.
  • [20] Głomb M., Kordylewski W., Łuszkiewicz D.: Disposal of oxidation products of SO2, NOx and Hg by ozone in absorption node. In: Air protection: selected issues: a collective work / ed. Joseph Kuropki and Anna Musialik-Piotrowska. Wroclaw: Polish Association of Sanitary Engineers and Technicians. Lower Silesian Branch, 2014 pp. 152-161 (in Polish).
  • [21] Boilers catalogue "Rafako" company.
  • [22] www.Degrement-technologies.com
  • [23] http://www.zlotniki.com.pl/index.php?name=News&file=article&sid=12
  • [24] R. Zmuda, Pozzobon E., B. Higgins, Kinal E., Siwińska M.: Flue gas denitrification - a combination of primary and secondary methods of catalytic optimal solution to meet NOx level of 100 mg / m3 n, 12 International Boiler Conference, Szczyrk 2014 (in Polish)
  • [25] IPM Model – Revisions to Cost and Performance for APC Technologies, SCR Cost Development Methodology, Project 12301-007, August 2010
  • [26] www.wnp.pl
  • [27] Schüttenhelm W., Huber K., Teuber Z.: SNCR technology for large combustion plants- Operational experiences with commercial installation in a 225 MWel coal-fired boiler, VGB PowerTech 12.2013, p. 71-75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8abf69bb-bdf2-4238-90e4-e5a8b6e730da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.