Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Abstract This article addresses the problem of sensorless control of a squirrel-cage induction generator (SCIG) used as a shaft generator in shipboard DC power systems. The work is motivated by the growing adoption of DC shipboard microgrids, where robust and cost-effective generators without mechanical sensors are desirable. A mathematical model of the SCIG in α-β and d-q reference frames is derived and discretized, enabling efficient real-time implementation on a DSP–FPGA control platform. Building on this model, the paper proposes a hybrid current–voltage observer that combines a current-model estimator (effective at low speed) with a voltage-model estimator (accurate at medium and high speed). PI-based compensating voltages are introduced to suppress numerical integration drift and reduce sensitivity to stator resistance variation, ensuring accurate estimation of rotor flux, flux angle, and rotational speed. The excitation process of the generator is analysed with respect to initial DC-link voltage, shaft speed, and loss currents, and criteria for successful self-excitation are identified. The proposed algorithm is validated through time-domain simulations and laboratory experiments on a 3 kW SCIG system. Results show close agreement between simulation and measurements, stable DC-link voltage regulation under varying load and speed, and reliable sensorless operation that is comparable to, or more robust than, encoder-based systems in the presence of EMI. The study confirms the practical suitability of the hybrid observer for shipboard SCIG applications over a wide rotational speed operating range.
Rocznik
Tom
Strony
148--160
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Maritime University of Szczecin, Faculty of Mechatronics and Electrical Engineering, 2 Willowa St., 71-650 Szczecin, Poland
autor
- Maritime University of Szczecin, Faculty of Mechatronics and Electrical Engineering, 2 Willowa St., 71-650 Szczecin, Poland
autor
- Maritime University of Szczecin, Faculty of Mechatronics and Electrical Engineering, 2 Willowa St., 71-650 Szczecin, Poland
Bibliografia
- 1. Aboelezz, A.M., Sedhom, B.E., El-Saadawi, M.M., Eladl, A.A. & Siano, P. (2023) State-of-the-art review on shipboard microgrids: Architecture, control, management, protection, and future perspectives. Smart Cities 6 (3), pp. 1435–1484, doi: 10.3390/smartcities6030069.
- 2. Bašić, M., Bubalo, M., Vukadinović, D. & Grgić, I. (2021) Sensorless maximum power control of a standalone squirrel-cage induction generator driven by a variable-speed wind turbine. Journal of Electrical Engineering & Technology 16 (1), pp. 333–347, doi: 10.1007/s42835- 020-00582-8.
- 3. Mohan, N. & Raju, S. (2020) Analysis and Control of Electric Drives. Hoboken, NJ, USA: Wiley.
- 4. Cárdenas, R. & Peña, R. (2004) Sensorless vector control of induction machines for variable-speed wind energy applications. IEEE Transactions on Energy Conversion 19 (1), pp. 196–205, doi: 10.1109/TEC.2003.821863.
- 5. Choi, J.-W., Chung, D.-W. & Sul, S.-K. (1996) Implementation of field-oriented induction machine considering iron losses. IEEE Proceedings of Applied Power Electronics Conference, APEC’96, San Jose, CA, USA, pp. 375–379, doi: 10.1109/APEC.1996.500469.
- 6. Di Piazza, M.C., Luna, M., La Tona, G., Accetta, A., Pucci, M. & Pietra, A. (2018) A mixed AC/DC low voltage electrical distribution architecture for increasing the payload on ships. In Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research, IOS Press, pp. 230–237, doi: 10.3233/978-1-61499-870-9-230.
- 7. Du, T. (1993) Joint state and parameter estimation of induction motor drives with application to adaptive field-oriented control. Ph.D. dissertation. Faculty of Engineering, University of Birmingham, Edgbaston, U.K.
- 8. Griffiths, D.V. & Smith, I.M. (1991) Numerical Methods for Engineers: A Programming Approach. Oxford, U.K.: Blackwell Scientific Publications.
- 9. Holtz, J. (2002) Sensorless control of induction motor drives. Proceedings of the IEEE 90 (8), pp. 1359–1394, doi: 10.1109/JPROC.2002.800726.
- 10. Hurst, K.D., Habetler, T.G., Griva, G. & Profumo, F. (1998) Zero-speed tacholess IM torque control: Simply a matter of stator voltage integration. IEEE Transactions on Industry Applications 34 (4), pp. 790–795, doi: 10.1109/28.703975.
- 11. Kim, K., Park, K., Roh, G. & Chun, K. (2018) DC-grid system for ships: A study of benefits and technical considerations. Journal of International Maritime Safety, Environ- mental Affairs, and Shipping 2 (1), pp. 1–12, doi: 10.1080/ 25725084.2018.1490239.
- 12. Kjellson, G. (2024) Sensitivity Analysis of Flux Estimation Methods for Field-Oriented Control of Induction Machines. M.S. thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
- 13. Kozak, M., Bronsky, R. & Matuszak, M. (2024) Application of Squirrel Cage Generator Control System Utilizing Direct Torque Control Method as the Shaft Generator in a Seagoing Ship. Energies 17 (23), 5985, doi: 10.3390/ en17235985.
- 14. Kubatko, M., Bielesz, D., Kirschner, S., Hamani, K., Kuchar, M., Mrovec, T. & Prazenica, M. (2025) Sensorless direct field-oriented control of induction motor drive using artificial neural network-based reactive power MRAS. Sensors 25 (23), 7135, doi: 10.3390/s25237135.
- 15. Latek, W. (1994) Maszyny elektryczne w pytaniach i odpowiedziach. Warszawa, Poland: WNT.
- 16. Luna, M., La Tona, G., Accetta, A., Pucci, M., Pietra, A. & Di Piazza, M.C. (2023) Optimal management of battery and fuel cell-based decentralized generation in DC shipboard microgrids. Energies 16 (4), 1682, doi: 10.3390/ en16041682.
- 17. Martínez-Rodrigo, F., Ruíz-González, J.M., Domínguez-Vázquez, J.A. & Herrero De Lucas, L.C. (2002) Sensorless control of a squirrel cage induction generator to track the peak power in a wind turbine. IEEE 28th Annual Conference of the Industrial Electronics Society, IECON 02, Sevilla, Spain, Nov. 5–8, pp. 169–174 vol. 1, doi: 10.1109/ iecon.2002.1187501.
- 18. Mathews, J.H. & Fink, K.K. (2004) Numerical Methods Using MATLAB. 4th ed. Upper Saddle River, NJ, USA: Prentice Hall.
- 19. Naugher, L.A. (2018) The squirrel cage induction machine as an alternative to the permanent magnet generator for direct drive tidal turbines. Ph.D. dissertation, Newcastle University, Newcastle upon Tyne, U.K.
- 20. Satpathi, K., Balijepalli, V.S.K.M. & Ukil, A. (2017) Modeling and real-time scheduling of DC platform supply vessel for fuel efficient operation. IEEE Transactions on Transportation Electrification 3 (3), pp. 762–778, doi: 10.1109/TTE.2017.2744180.
- 21. Seyoum, D., Grantham, C. & Rahman, F. (2001) Analysis of an isolated self-excited induction generator driven by variable speed prime mover. Proceedings AUPEC’01, Curtin University of Technology, Perth, September 2001, pp. 49–54.
- 22. Seyoum, D., Rahman, F. & Grantham, C. (2003) An improved flux estimation in induction machine for control application. University New South Wales, Sydney, NSW, Australia.
- 23. Texas Instruments (1997) Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP. Application Note BPRA057, Texas Instruments Europe.
- 24. Tiitinen, L., Hinkkanen, M. & Harnefors, L. (2025) Sensorless flux-vector control framework: An extension for induction machines. IEEE Transactions on Industri- al Electronics, 72 (11), pp. 11081–11086, doi: 10.1109/ TIE.2025.3559958.
- 25. Xu, L., Guerrero, J.M., Lashab, A., Wei, B., Bazmohammadi, N., Vasquez, J. & Abusorrah, A.M. (2022) A review of DC shipboard microgrids—Part I: Power architectures, energy storage and power converters. IEEE Transactions on Power Electronics 37 (5), pp. 5155–5172, doi: 10.1109/ TPEL.2021.3128417.
- 26. Zahedi, B. & Norum, L.E. (2014) Optimized efficiency of all-electric ships by DC hybrid power systems. Electric Power Systems Research 112, pp. 83–92, doi: 10.1016/j. epsr.2014.01.010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aba0fa7-849a-4d80-b614-7223237c0e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.