Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The sphere of influence graph of the set of vertices in Rd is constructed by identifying the nearest neighbour of each vertex, centering a ball at each vertex so that its nearest neighbour lies on the boundary, and joining two vertices by an edge if and only if their balls intersect. We determine the expectation and variance of the number of vertices of degree one in the random sphere of influence graph.
Czasopismo
Rocznik
Tom
Strony
391--397
Opis fizyczny
Bibliogr. 4 poz.
Twórcy
autor
- Department of Discrete Mathematics, Adam Mickiewicz University, ul. Matejki 48/49, 60-769 Poznań, Poland
Bibliografia
- [1] R. A. Dwyer, The expected size of the sphere of influence graph, Computational Geometry 5 (1995), pp. 155-164.
- [2] Z. Füredi, The expected size of a random sphere of influence graph, Intuitive Geometry, Bolyai Mathematical Society 6 (1995), pp. 319-326.
- [3] Z. Füredi and P. A. Loeb, On the best constant on the Besicovitch covering theorem, Proc. Coll. Math. Soc. J. Bolyai 63 (1994), pp. 1063-1073.
- [4] P. Hitczenko, S. Janson and J. E. Yukich, On the variance of the random sphere of influence graph, Random Struct. Alg. 14 (1999), pp. 139-152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ab3821c-00f7-4432-b3b6-c82683309826