PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Junction configurations and their impacts on Cu(In,Ga)Se₂ based solar cells performances

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One dimension solar cells simulator package (SCAPS) is used to study the possibility of carrying out thin CIGS solar cells with high and stable efficiency. In the first step, we modified the conventional ZnO:B/i-ZnO/CdS/SDL/CIGS/Mo structure by substituting the SDL layer with the P₊ layer, having a wide bandgap from 1 to l.12 eV. Then, we simulated the J-V characteristics of this new structure and showed how the electrical parameters are affected. Conversion efficiency of 18.46% is founded by using 1.1 μm of P + layer thickness. Secondly, we analyze the effect of increase thickness and doping density of CIGS, CdS and P₊ layers on the electric parameters of this new structure. We show that only the short-circuit current density (JSC) and efficiency are improved, reaching respectively 34.68 mA/cm2 and 18.85%, with increasing of the acceptors density. Finally, we introduced 10 nm of various electron reflectors at the CIGS/Mo interface in the new structure to reduce the recombination of minority carriers at the back contact. High conversion efficiency of 23.34% and better stability are obtained when wide band-gap BSF is used.
Słowa kluczowe
Twórcy
  • Département de Physique, Faculté des Sciences, Université de Yaoundé 1, BP 812, Yaoundé, Cameroon
  • Laboratoire des Matériaux et Environnement (LAME), UFR-SEA, Université de Ouagadougou, BP 7021, Ouaga 03, Burkina Faso
autor
  • Département de Physique, Faculté des Sciences, Université de Yaoundé 1, BP 812, Yaoundé, Cameroon
autor
  • Département de Physique, Faculté des Sciences, Université de Yaoundé 1, BP 812, Yaoundé, Cameroon
  • Département de Physique, Faculté des Sciences, Université de Yaoundé 1, BP 812, Yaoundé, Cameroon
Bibliografia
  • [1] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W.Wischmann, M. Powalla, Prog. Photovolt: Res. Appl. 19 (2011) 894.
  • [2] Philip Jackson, et al., Effects of heavy alkali elements in Cu(In,Ga)Se2 solarcells with efficiencies up to 22.6%, Physica Status Solidi (RRL) Rapid Res. Lett.10 (8) (2016) 583–586.
  • [3] V.S. Saji, I.H. Choi, C.W. Lee, Progress in electrodeposited absorber layer forCuIn(1− x)GaxSe2(CIGS) solar cells, Sol. Energy 85 (11) (2011) 2666–2678.
  • [4] O. Lundberg, M. Edoff, L. Stolt, The effect of Ga-Grading in CIGS thin film solarcells, Thin Solid Films 480-481 (2005) 520–525.
  • [5] M.J. Romero, K.M. Jones, J. AbuShama, Y. Yan, M.M. Al-Jassim, R. Noufi, Surface-layer band gap widening in Cu(In,Ga)Se2 thin films, Appl. Phys. Lett.83 (23) (2003) 4731–4733.
  • [6] Y. Yan, K.M. Jones, J. Abushama, M. Young, S. Asher, M.M. Al-Jassim, R. Noufi, Microstructure of surface layers in Cu(In,Ga)Se2 thin films, Appl. Phys. Lett. 81(6) (2002) 1008–1010.
  • [7] Zhang Li, Xue Yu-Ming, Xu Chuan-Ming, He Qing, Liu Fang Fang, LieChang-Jian, Sun Yun, Microstructural characterization of Cu-poorCu(In,Ga)Se2 surface layer, Thin Solid Films 520 (2012) 2873–2877.
  • [8] D. Liao, A. Rockett, Cd doping at the CuInSe2/CdS heterojunction, J. Appl. Phys.93 (11) (2003) 9380–9382.
  • [9] Y. Okano, T. Nakada, A. Kunioka, XPS analysis of CdS/CuInSe2 hetero junction, Sol. Energy Mater. Sol. Cells 50 (1998) 105.
  • [10] M.J. Romero, K.M. Jones, J. AbuShama, Y. Yan, M.M. Al-Jassim, R. Noufi, Surface- layer band widening in Cu(In,Ga)Se2 thin films, Appl. Phys. Lett. 83(2003) 4731.
  • [11] Chia-Hua Huang, Effects of junction parameters on Cu(In;Ga)Se2 solar cells, J.Phys. Chem. Solids 69 (2008) 779, 69, 779.
  • [12] A. Niemegeers, M. Burgelman, R. Herberholz, U. Rau, D. Hariskos, H.-W.Schock, Model for electronic transport in Cu(In,Ga)Se2 solar cells, Prog.Photovolt. Res. Appl. 6 (1998) 407–421.
  • [13] S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, Computational analysis of the effectof the surface defect layer (SDL) properties on Cu(In,Ga)Se2-based solar cell performances, J. Phys. Chem. Solids 75 (5) (2014) 688–695.
  • [14] S. Ouedraogo, R. Sam, F. Ouedraogo, M.B. Kebre, F. Zougmore, J.M. Ndjaka,Optimization of copper indium gallium Di-selenide (CIGS) based solar cells byback grading, in: AFRICON IEEE, 2013, pp. 1–6.
  • [15] M. Gloeckler, J.R. Sites, Potential of submicrometer thickness Cu(In, Ga)Se2 solar cells, J. Appl. Phys. 98 (10) (2005) 103703.
  • [16] Y. Hagiwara, T. Nakada, A. Kunioka, Improved Jsc in CIGS thin film solar cellsusing a transparent conducting ZnO:B window layer, Sol. Energy Mater. Sol.Cells 67 (2001) 267–271.
  • [17] M.A. Contreras, L.M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, W.Mannstadt, Improved energy conversion efficiency in wide band-gap Cu(In,Ga)Se2 solar cells, 2011, Photovoltaic Specialists Conference (PVSC), 37th IEEE(2011) 000026–000031.
  • [18] S. Degrave, M. Burgelman, P. Nollet, Modelling of polycrystalline thin film solar cells: new features in SCAPS version 2.3, 2003, Photovoltaic EnergyConversion 1 (2003) 487–490.
  • [19] A. Hultqvist, C. Platzer-Björkman, E. Coronel, M. Edoff, Experimental investigation of Cu(In1− x,Gax)Se2/Zn (O1− z, Sz) solar cell performance, Sol.Energy Mater. Sol. Cells 95 (2) (2011) 497–503.
  • [20] S. Ouédraogo, F. Zougmoré, J.M. Ndjaka, Numerical analysis ofcopper-indium-gallium-diselenide-based solar cells by SCAPS-1D, Int. J.Photoenergy (2013), http://dx.doi.org/10.1155/2013/421076.
  • [21] M. Topic, F. Smole, J. Furlan, Examination of blocking current-voltagebehaviour through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mosolar cell, Sol. Energy Mater. Sol. Cells 49 (1997) 311–317.
  • [22] D. Hariskos, S. Spiering, M. Powalla, Buffer layers in Cu(In, Ga)Se2 solar cellsand modules, Thin Solid Films 480 (2005) 99–109.
  • [23] S.H. Demtsu, J.R. Sites, Quantification of losses in thin-film CdS/CdTe solar cells, Photovoltaic Specialists Conference (2005) 347–350..
  • [24] M. Igalson, P. Zabierowski, D. Przado, A. Urbaniak, M. Edoff, W.N. Shafarman, Understanding defect-related issues limiting efficiency of CIGS solar cells,Solar Energy Mater. Solar Cells 93 (2009) 1290–1295.
  • [25] M. IGALSON, P. ZABIEROWSKI, Electron traps in Cu(In,Ga)Se2 absorbers of thinsolar cells studied by junction capacitance techniques, Opto-electron. Rev. 11(4) (2003) 261–267.
  • [26] M. Igalson, M. Bodegard, L. Stolt, Reversible changes of the fill factor in the ZnO/CdS/Cu(In,Ga)Se2 solar cells, Sol. Energy Mater. Sol. Cells 80 (2003)195–207.
  • [27] M. Topic, F. Smole, J. Furlan, Examination of blocking current-voltagebehaviour through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mosolar cell, Sol. Energy Mater. Sol. Cells 49 (1997) 311–317.
  • [28] S. Ouedraogo, R. Sam, F. Ouedraogo, M.B. Kebre, F. Zougmore, J. Ndjaka,M: Modélisation numérique d’une cellule solaire à couches minces à base deCIGS, thèse de doctorat Ph/D, à l’Université de de Ouagadougou, Burkina Faso,2015 (IN FRENCH).
  • [29] O. Lundberg, M. Bodegard, J. Malmstrom, L. Stolt, Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance, Prog. Photovolt: Res.Appl. 11 (2003) 77–88.
  • [30] A. Teyou Ngoupo, S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, New architecture towards ultrathin CdTe solar cells for high conversion efficiency, Int. J.Photoenergy (2015), http://dx.doi.org/10.1155/2015/961812.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8aa771ca-d1b2-4436-a11c-520ed879facd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.