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ANALYSIS AND SIMULATION OF NONLINEAR SELF-EXCITED 
 VIBRATIONS IN TURNING  

Commonly applied theories of self-excited vibrations in machine tools are prevailingly based on frequency 
domain analysis of linear models and are devoted in most cases only to evaluation of stability limits of strictly 
linear systems. In this way, the behaviour of more stable or more unstable systems cannot be studied and 
analyzed. Certain important nonlinear effects cannot be studied as well for limitations connected with classical 
representation of systems only in the frequency domain. Evaluation of stability by analysis of nonlinear systems 
in time domain has not been applied until now. The paper shows a new approach based on interpretation of the 
self-excited vibration systems as nonlinear servo-systems. With this approach, linear and nonlinear systems of 
any degree of stability can be studied by combination of frequency and time-domain methods. This can 
considerably contribute to better understanding of complex phenomena in various regimes and special situations.  

1. INTRODUCTION  

 Self-excited vibrations in machine tools arise as a result of interaction between the 
elastic structure of machine and the metal cutting process. At certain conditions, typically at 
certain limiting width of chip, the interaction becomes too strong and the tool starts to 
vibrate relatively to the workpiece. The whole combined system becomes unstable and the 
amplitudes of vibration grow and may cause serious damage of the tool, spindle or the whole 
machine. Analysis of this phenomenon, performed already about fifty years ago  
by Prof. Tlusty, DrSc. and his colleagues [1], [2], [3] and [4] have shown that the stability of 
excited vibrations is influenced by the space orientation of the machine vibration system 
with respect to the normal to the machined surface and that the chatter occurs at smaller 
width of chip when the machined surface has already certain surface waviness produced at 
previous cut. Prof. Tobias [5] published the “lobe” diagrams, expressing how the change of 
spindle revolutions can influence critical width of cut on the limit of stability. Most of later 
publications  like  Main achievements of the classic theory are based on the following 
assumptions: 
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• Only relative vibrations between the tool and workpiece in normal direction to the 
machined surface can influence the system stability 

• A linear system is on the limit of stability, when the amplitude of vibrations Y(t) equals 
to the amplitude of the surface waviness Y0 (t) caused by the previous cut 

• Because the exciting cutting force F acting on the vibration system is for constant 
value of the width of cut b considered as proportional to the actual depth of cut (Y(t)) - 
Y0 (t) by the specific cutting coefficient R, the depth of cut is always in phase with the 
cutting force F.  

• As no phase shift. time delay or complex  value of the coefficient R is considered, it 
follows that the real parts Re [Y(t)] and Re [Y0(t)] will equal in size and will be 
opposite in sense.  

• For a particular vibration system with the frequency response Φ, values of critical 
width of cut blim can be relatively easy calculated using the well known criterion: 

blim = - 1/( 2R · Re[Ф]neg)      (1) 

These assumptions are valid for linear systems on the limit of stability and are  commonly 
applied in  most of numerous later publications on the subject, like in [4],[6] and [7]. 
Nevertheless, for evaluation of stability by application of the criterion (1), the system uses 
only real part of the frequency characteristics of the machine structure as shown in the Fig. 1 
and cannot be applied for a general analysis of its behaviour in both frequency and time 
domains. 

 

   

Fig. 1. Classical representation of the system for evaluation of the stability by application of the criterion (1) 

2. INTERPRETATION OF SELF EXCITED VIBRATIONS AS 
 FEEDBACK SYSTEMS 

 For more general analysis of system behaviour both in frequency and time domains, we 
have interpreted the waviness Yo(t) as the vibration (Y(t), delayed in time. For turning 
processes, this time delay corresponds to the time T of one spindle revolution, for milling 
processes, it corresponds to the time interval T/n between two cutting edges of the rotating 
tool. Modern Matlab/Simuling methods allow us to apply this nonlinear feature in both 
frequency and time domains. Then, it is possible to introduce other nonlinearities and 
generate block diagrams of feedback systems for various cases and configurations and study 
behaviour of systems with different degree of stability. Instead of evaluating only the width 
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blim of the chip on the limit of stability, we may for instance study complete complex open 
loop characteristics and apply the Nyquist criterion of stability. The correspondence between 
the classic criterion (1) and new Nyquist diagram is depicted in the Fig. 2. The Nyquist 
critical point for the limit of stability coincides with the criterion (1), but the frequency 
response includes now the whole system, not only the mechanical structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Correspondence between the classic and Nyquist stability criterions 

 
 
 The programmed depth of cut H(t) represents here the input function of the system. 
Coloured areas represent nonlinear blocks. Corresponding general block diagram for case of 
turning processes is shown in the Fig.3. The depth of cut (Y(t)– Y0 (t)) is here represented in 
a full complex form, not only as the parts Re [Y0 (t)] and Re [Y(t)]. The programmed depth 
of cut H(t) represents here the input function of the system. Coloured areas represent 
nonlinear blocks. Medium value of the input H(t) causes certain medium value of the cutting 
force and a corresponding medium displacement of the machine structure, which doesn’t 
theoretically influence the stability of a linear system. Actual depth of cut h(t) is expressed 
by the equation: 

h(t) = H(t) – (Y (t) – Y0 (t))      (2) 
 

 When the value of (Y0 (t) - Y(t)) is bigger than the value of H(t), the tool jumps out of 
the material and the cutting force F(t) stops to be generated. This is in the diagram in Figure 
3 represented by a nonlinear block which lets to pass unchanged only positive values of h(t) 
and blocks the negative ones. Jumping of tool out of material is a nonlinear effect limiting 
the amplitude of vibrations of unstable systems. Positive part of h(t) represents the actual 
depth of cut. Multiplication by the width of cut b produces the cross section of the chip and 
next coming multiplication by the specific cutting resistance R produces the cutting force 
F(t).  
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 Classic stability criterion in the equation (1) supposes that the value of  R is real, but 
we may also deal with a certain time delay Z between the chip cross section b . (Y(t) – Y0(t)) 
and the cutting force F. Then, the  depth  of cut  (Y0 (t) – Y(t))  will be  here represented in a  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 3. General block diagram for analysis of self-excited vibrations in a non-linear two-mode system  

 

full complex form, not only as the difference between real parts Re [Y0 (t)] and Re [Y(t)]. 
Constant value of the input H(t) causes certain medium value of the cutting force and  
a corresponding medium displacement of the machine structure, which doesn`t influence the 
stability.  
 When the value of (Y(t) - Y0 (t)) is bigger than the value of H(t), the tool jumps out  
of the material and the cutting force F(t) stops to be generated. This is represented in the 
Fig. 3 by a nonlinear block which lets to pass unchanged only positive values of h(t) and 
blocks the negative ones. Jumping of tool out of the material is a nonlinear effect limiting 
the amplitude of vibrations of unstable systems. Positive part of h(t) represents the actual 
depth of cut. Multiplication by the width of cut b produces the cross section of the chip and 
multiplication by the specific cutting resistance R produces the cutting force F(t). Possible 
complexity of the specific cutting coefficient R is in the Fig. 2 represented by the time delay 
Z.  
 Let us call the whole part of the diagram with the input h(t) and output F(t), in which 
the force F(t) is generated, as the group F. The block diagram in the Fig. 3 has, besides  
of the group F, two other groups these being the group Φ and group Ψ. Group Φ represents 
a two-mode vibration structure of the machine and tool and includes direction factors q1 and 
r for getting the output vibration component in the normal direction to the machined surface. 
Vibration in tangential direction can be considered as a modification of the time delay T in 
the next block group Ψ, which solves the waviness effects of previously machined surfaces 
and performs the conversion of the vibration Y(t) into the actual depth of cut (Y(t)– Y0(t)). 
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Fig. 4. Frequency response of the groups Φ and Ψ 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Resultant open loop frequency response of the system with all three block groups F,Φ and Ψ interconnected 

 Parameter p varies between one and zero and respects the fact that in turning only  
a part of the machined surface may enter into repeating turning cut. Fig. 3 shows examples 
of frequency characteristics of groups Φ and Ψ for a two-mode vibration system with natural 
frequencies 72 Hz and 120 Hz. Tangential vibrations are not considered here. Fig. 5 shows 
the resultant open loop frequency response of the system with all three interconnected 
groups F, Φ and Ψ. Values of parameters are b = 1. 10-3 m, R = 2.109 Pa, Z = 0 sec, T = 0,1 
sec. and mode frequencies 72 and 120 Hz. When a slight time delay Z of 0.002 sec is 
considered, corresponding to certain reasonable phase shift at the frequency on the limit of 
stability, characteristics from the Fig. 5 modifies to shapes shown in the Fig. 6. For the given 
value of b, the system is no more stable. 
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3. SPECIAL PHENOMENA NEAR THE LIMIT OF STABILITY 

 Changes of the spindle revolutions influence directly the values of the time delay T and 
the form of open loop Nyquist characteristics shown in the Fig. 5 and 6. Application  
of developed procedures makes it possible to plot “lobe” diagrams showing changes  
of critical blim for different spindle revolutions as shown in the Fig. 7 for both just shown 
systems. System with time delay Z shows much lower values of  blim in its “lobe” diagram.  
 Analysis has shown that the critical width of cut blim depends strictly only on the phase 
shift between the vibration Y(t) and surface waviness Y0(t). Corresponding graphical proof 
is shown in the Fig. 8 and in a 200 times magnified detail shown in the Fig. 9. Self excited 
vibrations occur only in certain range of phase shift and in other areas cannot exist even at 
most extreme values of b. The situation is depicted as 3D diagrams in the Fig. 10 and 11. 
The relation between the phase and blim. keeps unchanged, but the occurrence of stability 
limits varies quite unexpectedly and jumps among different spindle revolutions. 
 

 
 

Fig. 6. Frequency characteristic modified due to Influence of time delay Z=0.002 

 

 
 

Fig. 7. Lobe characteristics for Z=0 and Z= 0.002 for a range of 30 to 5000 rev/min 
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 This can be still better seen in the Fig. 11, which shows the behaviour of the system at 
continuous change of spindle revolutions. The most interesting of these phenomena is that 
for any spindle revolutions exist always only one critical phase shift between the vibration 
and surface waviness and only one corresponding critical width of cut.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. At any spindle revolutions, the critical width of cut  Fig. 9. A 200 times magnified detail of a portion     
depends strictly only on the phase shift between        of  the Fig. 8 

         the vibration and surface waviness 

 
 

 
 
 
 
 
 
 
 
 

         Fig. 10. A 3D representation of stability limits  Fig. 11. Jumping of phase and corresponding critical  
 occurrence within chosen range of spindle revolutions    width of cut when changing the spindle revolutions 

4. TIME DOMAIN SIMULATIONS 

 Criteria of stability used in classical linear theory of self–excited vibrations is based on 
the comparison of two successive vibration amplitudes, these being the amplitude of actual 
vibration Y and amplitude Y0 of surface waviness. This approach supposes that the system 
on the limit of stability founds itself in a special state of steady vibrations, after dying off all 
previous transient phenomena. We may designate this criterion as a “steady-vibration” 
criterion. Unfortunately, this presumption may not occur in real situations. Vibration and 
surface waviness may interfere and be combined with various process shocks. Then, the 
simulation in time-domain could be preferably applied for better understanding what is 
really happening. General block diagram shown in the Fig. 2 can be used without change for 
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this purpose making it possible to simulate even the influence of specified nonlinear 
phenomena. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Simulation in time-domain showing effects of shocks from incoming surface waviness 

 
 
 Fig. 12 shows an example of a transient process simulation for a case, when the tool 
starts to machine a clean material. At the beginning, the vibrations are well damped. After 
the time period T, the system gets the first shock from incoming surface waviness. The time 
domain simulation shows a very poor damping of vibrations due to periodically repeating 
shocks from incoming waviness. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 13. Simulation in time-domain showing unstable behavior due to shocks from waviness 

 

Very stable system without waviness 

Quite stable system along the classic theory 

Poorly damped system at time domain simulation, practically on 
limit of stability 
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 Fig. 13 shows the situation with slightly higher width of cut b. Due to repeating shocks 
in time periods of  T, the system is periodically excited and becomes unstable. For longer T, 
the system has more time to damp before next shocks arrive and may have a better chance to 
keep stability. 

5. STABILITY EVALUATION AT TIME-DOMAIN SIMULATION 

 Analysis and simulation of transient phenomena of self-excited vibrations can as well 
be applied for quantitative and evaluation of stability, if a suitable stability criterion would 
be found. Various criteria have been unsuccessfully tested and all the time found cases 
where they failed. Finally, an automatic iteration procedure called “vibration integral” 
criterion has been developed which until now works in all tested linear and nonlinear cases. 
The procedure is depicted in the Fig. 12 and works in the following way: The transient 
process is simulated for a time longer than about 200 vibration waves First period, during 
which the tool cuts clean material without waviness is dropped out from further analysis. 
Then, the simulation time Ts is divided into two equal time periods. During the first period, 
the integral of absolute values of vibrations is collected in one register where it creates the 
sum I1 and during the second period in another register where it creates the sum I2. By 
iterative changing of the width of cut b, we find the blim yfor which I1 = I2 and take it as the 
limit of stability. For other cases, it is also possible to evaluate the ratio I1 / I2 for quantitative 
evaluation of the stability degree. The time domain simulation and the “vibration integral” 
criterion  works well also for nonlinear phenomena. 
 
 

 
 
 

Fig. 14. „Vibration integral“ criterion for quantitative evaluatin of stability from time/domain simulation 
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the integral of absolute values of vibrations is collected in one register where it creates the 
sum I1 and during the second period in another register where it creates the sum I2. By 
iterative changing of the width of cut b, we find the blim yfor which I1 = I2 and take it as the 
limit of stability. For other cases, it is also possible to evaluate the ratio I1 / I2 for quantitative 
evaluation of the stability degree. The “vibration integral” criterion worked well also for all 
until tested nonlinearities. 

6. LOBE DIAGRAMS FOR SYSTEMS WITH DIFFERENT DEGREE OF STABILITY 

 Being able to determine limit of stability by evaluating of blim from simulated transient 
processes, we may repeat the same procedure for different spindle revolutions and draw the 
lobe diagrams from the simulated transient processes of linear or nonlinear systems. 
Example of such a lobe diagram is shown in the Fig. 15, which corresponds well with the 
diagram in Fig. 7. More over, with the quantitative “vibration integral” criterion, we may  

 

 

Fig. 15. Example of a lobe diagram made by an iteration procedure from time-domain simulation data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Lobe diagrams for systems with various degrees of stability 
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Fig. 17. Changes of depth of cut, phase and critical frequency for systems on the limit of stability 

choose the demanded degree of system stability by choosing the ratio (I1/ I2) and draw lobe 
diagrams for various “safety” against instability. Fig. 16 shows three lobe curves for ratios 
(I1/ I2) equal to 1, 2 and 10. Internal system parameters for systems with different degree of 
stability can be registered during time-domain simulation. Fig. 17 shows changes of depth of 
cut, phase and critical frequency related to various spindle revolutions in systems on the 
limit of stability.  

7. SUMMARY 

 A new approach to analysis of self- excited vibrations involving non-linear elements 
has been applied in the RCMT Research Centre of Manufacturing Technology in Prague. 
Interpretation of self-excited vibrations as non-linear feedback systems makes it possible to 
apply highly developed Matlab/Simulink methods and study frequency and transient 
phenomena in systems with various degree of stability. Simulation and analysis of transient 
responses can contribute considerably to better understanding of complex, nonlinear 
dynamic systems and of their behaviour in various regimes and special situations.  
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