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ANALYSIS AND SIMULATION OF NONLINEAR SELF-EXCITED
VIBRATIONS IN TURNING

Commonly applied theories of self-excited vibrasioim machine tools are prevailingly based on fregye
domain analysis of linear models and are devotenidst cases only to evaluation of stability limitfsstrictly
linear systems. In this way, the behaviour of mstable or more unstable systems cannot be studidd a
analyzed. Certain important nonlinear effects catm@studied as well for limitations connected witassical
representation of systems only in the frequencyaionEvaluation of stability by analysis of nonlimesystems

in time domain has not been applied until now. phper shows a new approach based on interpretattithe
self-excited vibration systems as nonlinear sepsgtesns. With this approach, linear and nonlineatesys of
any degree of stability can be studied by combamatdf frequency and time-domain methods. This can
considerably contribute to better understandingoofiplex phenomena in various regimes and spetigitsins.

1. INTRODUCTION

Self-excited vibrations in machine tools ariseaasesult of interaction between the
elastic structure of machine and the metal cufbraxess. At certain conditions, typically at
certain limiting width of chip, the interaction moes too strong and the tool starts to
vibrate relatively to the workpiece. The whole cangal system becomes unstable and the
amplitudes of vibration grow and may cause serdamage of the tool, spindle or the whole
machine. Analysis of this phenomenon, performedeaaly about fifty years ago
by Prof. Tlusty, DrSc. and his colleagues [1], [3],and [4] have shown that the stability of
excited vibrations is influenced by the space dagon of the machine vibration system
with respect to the normal to the machined surface that the chatter occurs at smaller
width of chip when the machined surface has alreadfiain surface waviness produced at
previous cut. Prof. Tobias [5] published the “lolsk&grams, expressing how the change of
spindle revolutions can influence critical widthaift on the limit of stability. Most of later
publications like Main achievements of the clasieory are based on the following
assumptions:
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. Only relative vibrations between the tool and waeke in normal direction to the
machined surface can influence the system stability

 Alinear system is on the limit of stability, wh#re amplitude of vibrations Y(t) equals
to the amplitude of the surface wavinessfy caused by the previous cut

. Because the exciting cutting force F acting on theation system is for constant
value of the width of cut b considered as propaodido the actual depth of cut (Y(t)) -
Y, (t) by the specific cutting coefficient R, the degtf cut is always in phase with the
cutting force F.

« As no phase shift. time delay or complex valuehef coefficient R is considered, it
follows that the real parts Re [Y(t)] and Reg(t] will equal in size and will be
opposite in sense.

. For a particular vibration system with the frequemesponsed, values of critical
width of cut [y, can be relatively easy calculated using the wab\vin criterion:

bim = - 1/( 2R - Rep]neg) (1)

These assumptions are valid for linear systemsherimit of stability and are commonly
applied in most of numerous later publicationstba subject, like in [4],[6] and [7].
Nevertheless, for evaluation of stability by apation of the criterion (1), the system uses
only real part of the frequency characteristicthef machine structure as shown in the Fig. 1
and cannot be applied for a general analysis obetsaviour in both frequency and time
domains.

F Complex frequency characteristic | I(?;guspe%r;
' b.R » & of the machine structure
Real part
Y-Y (real) 2 |

Fig. 1. Classical representation of the systenef@luation of the stability by application of théterion (1)

2. INTERPRETATION OF SELF EXCITED VIBRATIONS AS
FEEDBACK SYSTEMS

For more general analysis of system behaviour inofitequency and time domains, we
have interpreted the waviness(fy as the vibration (Y(t), delayed in time. Fomring
processes, this time delay corresponds to the Tiroé one spindle revolution, for milling
processes, it corresponds to the time intervalbBwveen two cutting edges of the rotating
tool. Modern Matlab/Simuling methods allow us toplpthis nonlinear feature in both
frequency and time domains. Then, it is possiblentooduce other nonlinearities and
generate block diagrams of feedback systems faowsicases and configurations and study
behaviour of systems with different degree of ditgbinstead of evaluating only the width
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bim Of the chip on the limit of stability, we may forstance study complete complex open
loop characteristics and apply the Nyquist criterad stability. The correspondence between
the classic criterion (1) and new Nyquist diagraardepicted in the Fig. 2. The Nyquist

critical point for the limit of stability coincidewith the criterion (1), but the frequency

response includes now the whole system, not oelyrtechanical structure.
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Fig. 2. Correspondence between the classic andiblystability criterions

The programmed depth of cut H(t) represents heeeirtput function of the system.
Coloured areas represent nonlinear blocks. Correlipg general block diagram for case of
turning processes is shown in the Fig.3. The deptut (Y(t)— Yo (1)) is here represented in
a full complex form, not only as the parts Reg [¥)] and Re [Y(t)].The programmed depth
of cut H(t) represents here the input function loé tsystem. Coloured areas represent
nonlinear blocks. Medium value of the input H(tusas certain medium value of the cutting
force and a corresponding medium displacement efntlachine structure, which doesn’t
theoretically influence the stability of a linearstem. Actual depth of cut h(t) is expressed
by the equation:

h(®) =H® - (¥ (1) - Y% (1) (2)

When the value of (¥(t) - Y(t)) is bigger than the value of H(t), thaot jumps out of
the material and the cutting force F(t) stops t@éeerated. This is in the diagram in Figure
3 represented by a nonlinear block which lets sspmchanged only positive values of h(t)
and blocks the negative ones. Jumping of tool duhaterial is a nonlinear effect limiting
the amplitude of vibrations of unstable systemssitRe@ part of h(t) represents the actual
depth of cut. Multiplication by the width of cutdroduces the cross section of the chip and
next coming multiplication by the specific cuttingsistance R produces the cutting force
F(t).
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Classic stability criterion in the equation (1pposes that the value of R is real, but
we may also deal with a certain time delay Z betwibe chip cross section b . (Y(t) oY)
and the cutting force F. Then, the depth of @u§ (t) — Y(t)) will be here represented in a

F— Tool and cutting process ? — Vibrating frame and
machine
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Fig. 3. General block diagram for analysis of si€ited vibrations in a non-linear two-mode system

full complex form, not only as the difference betnereal parts Re [¥(t)] and Re [Y(t)].
Constant value of the input H(t) causes certainiomdvalue of the cutting force and
a corresponding medium displacement of the madtieture, which doesn't influence the
stability.

When the value of (Y(t) - (t)) is bigger than the value of H(t), the tool josnout
of the material and the cutting force F(t) stopdégenerated. This is represented in the
Fig. 3 by a nonlinear block which lets to pass @amged only positive values of h(t) and
blocks the negative ones. Jumping of tool out ef itaterial is a nonlinear effect limiting
the amplitude of vibrations of unstable systemssitR@ part of h(t) represents the actual
depth of cut. Multiplication by the width of cutdsoduces the cross section of the chip and
multiplication by the specific cutting resistancepRduces the cutting force F(t). Possible
complexity of the specific cutting coefficient Rirsthe Fig. 2 represented by the time delay
Z.

Let us call the whole part of the diagram with thput h(t) and output F(t), in which
the force F(t) is generated, as the group F. Thekbtiagram in the Fig. 3 has, besides
of the group F, two other groups these being tleig® and group¥. Group® represents
a two-mode vibration structure of the machine amd &nd includes direction factors g1 and
r for getting the output vibration component in tiemal direction to the machined surface.
Vibration in tangential direction can be consideasda modification of the time delay T in
the next block groul, which solves the waviness effects of previouschined surfaces
and performs the conversion of the vibration Yiftpithe actual depth of cut (Y (t)—({)).
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Fig. 4. Frequency response of the gro@psnd¥
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Fig. 5. Resultant open loop frequency responsheosystem with all three block group®Rnd¥ interconnected

Parameter p varies between one and zero and tegbecfact that in turning only
a part of the machined surface may enter into teppéurning cut. Fig. 3 shows examples
of frequency characteristics of groupsandV¥ for a two-mode vibration system with natural
frequencies 72 Hz and 120 Hz. Tangential vibratimmesnot considered here. Fig. 5 shows
the resultant open loop frequency response of yisees with all three interconnected
groups F® and¥. Values of parameters are b = 118, R = 2.18 Pa, Z=0 sec, T= 0,1
sec. and mode frequencies 72 and 120 Hz. Whenght glme delay Z of 0.002 sec is
considered, corresponding to certain reasonablsepslaift at the frequency on the limit of
stability, characteristics from the Fig. 5 modiftesshapes shown in the Fig. 6. For the given
value of b, the system is no more stable.
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3. SPECIAL PHENOMENA NEAR THE LIMIT OF STABILITY

Changes of the spindle revolutions influence diyedbe values of the time delay T and
the form of open loop Nyquist characteristics shownthe Fig. 5 and 6. Application
of developed procedures makes it possible to plobe” diagrams showing changes
of critical by, for different spindle revolutions as shown in fig. 7 for both just shown
systems. System with time delay Z shows much loxakres of , in its “lobe” diagram.

Analysis has shown that the critical width of byt depends strictly only on the phase
shift between the vibration Y(t) and surface wasm&y(t). Corresponding graphical proof
is shown in the Fig. 8 and in a 200 times magnitiethil shown in the Fig. 9. Self excited
vibrations occur only in certain range of phasdtsind in other areas cannot exist even at
most extreme values of b. The situation is depiete®@D diagrams in the Fig. 10 and 11.
The relation between the phase apg keeps unchanged, but the occurrence of stability
limits varies quite unexpectedly and jumps amoffifgnt spindle revolutions.
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Fig. 6. Frequency characteristic modified due ftuence of time delay Z=0.002
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Fig. 7. Lobe characteristics for Z=0 and Z= 0.0024 range of 30 to 5000 rev/min
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This can be still better seen in the Fig. 11, wishows the behaviour of the system at
continuous change of spindle revolutions. The nmsresting of these phenomena is that
for any spindle revolutions exist always only omgical phase shift between the vibration
and surface waviness and only one corresponditigatnvidth of cut.
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Fig. 8. At any spindle revolutions, the criticaldth of cut Fig. 9. A 200 times magnified detaileoportion
depends strictly only on the phase shift between of the Fig. 8
the vibration and surface waviness

- s
Fig. 10. A 3D representation of stabilitgits Fig. 11. Jumping of phase and correspondiitical
occurrence within chosen range of spindle revohgi width of cut when changing the spindle retiohs

4. TIME DOMAIN SIMULATIONS

Criteria of stability used in classical linear ding of self—excited vibrations is based on
the comparison of two successive vibration ampéfiydhese being the amplitude of actual
vibration Y and amplitude Yof surface waviness. This approach supposeslibatystem
on the limit of stability founds itself in a spelcsate of steady vibrations, after dying off all
previous transient phenomena. We may designatectitisrion as a “steady-vibration”
criterion. Unfortunately, this presumption may maicur in real situations. Vibration and
surface waviness may interfere and be combined wvatious process shocks. Then, the
simulation in time-domain could be preferably aeglifor better understanding what is
really happening. General block diagram shown énRly. 2 can be used without change for
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this purpose making it possible to simulate eveea ifluence of specified nonlinear
phenomena.

x10* h trisky=0.5mm, C spec.r.o.=2,66e6,. n otacky=545ot/min
] T T T T T

Quite stable system along the classic theory§

: Poorly

damped system at time domaéin simulatiorgtprally on
~limit o . . (R B

fstablhty ..... S

55

=
= 50 il il .|I
3
a5l ] Verystables‘ Sstem without waviness ~~ 4
4 i i I |
o 0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8 2
cas(s)

Fig. 12. Simulation in time-domain showing effeofshocks from incoming surface waviness

Fig. 12 shows an example of a transient processlation for a case, when the tool
starts to machine a clean material. At the begmpnihe vibrations are well damped. After
the time period T, the system gets the first sHomi incoming surface waviness. The time
domain simulation shows a very poor damping of atilons due to periodically repeating
shocks from incoming waviness.
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Fig. 13. Simulation in time-domain showing unstatédavior due to shocks from waviness
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Fig. 13 shows the situation with slightly higheidt of cut b. Due to repeating shocks
in time periods of T, the system is periodicakkgiéeed and becomes unstable. For longer T,
the system has more time to damp before next sharcike and may have a better chance to

keep stability.
5. STABILITY EVALUATION AT TIME-DOMAIN SIMULATION

Analysis and simulation of transient phenomenaeadf-excited vibrations can as well
be applied for quantitative and evaluation of dighiif a suitable stability criterion would
be found. Various criteria have been unsuccesstelyed and all the time found cases
where they failed. Finally, an automatic iteratiprocedure called “vibration integral”
criterion has been developed which until now warkall tested linear and nonlinear cases.
The procedure is depicted in the Fig. 12 and wankghe following way: The transient
process is simulated for a time longer than ab®® Abration waves First period, during
which the tool cuts clean material without wavinessiropped out from further analysis.
Then, the simulation timegTs divided into two equal time periods. During first period,
the integral of absolute values of vibrations ilezted in one register where it creates the
sum k and during the second period in another registegravht creates the sum. IBy
iterative changing of the width of cut b, we filteth,, ,for which |, = I, and take it as the
limit of stability. For other cases, it is also piide to evaluate the ratig/Il, for quantitative
evaluation of the stability degree. The time donm&mulation and the “vibration integral”
criterion works well also for nonlinear phenomena.
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Fig. 14. ,Vibration integral” criterion for quangitive evaluatin of stability from time/domain siratibn
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the integral of absolute values of vibrations ilezted in one register where it creates the
sum k and during the second period in another registegravht creates the sum. IBy
iterative changing of the width of cut b, we filteth,, ,for which |, = I, and take it as the
limit of stability. For other cases, it is also piide to evaluate the ratig/Il, for quantitative
evaluation of the stability degree. The “vibratiotegral” criterion worked well also for all

until tested nonlineatrities.

6. LOBE DIAGRAMS FOR SYSTEMS WITH DIFFERENT DEGREBR- STABILITY

Being able to determine limit of stability by ewating of f,, from simulated transient
processes, we may repeat the same procedure feredhf spindle revolutions and draw the
lobe diagrams from the simulated transient processfelinear or nonlinear systems.
Example of such a lobe diagram is shown in the Fiy.which corresponds well with the
diagram in Fig. 7. More over, with the quantitativération integral” criterion, we may

Diagram stability

el Plubke sty [

oo L L
500 1000 1500 2000

otacky n [otsmin]

Fig. 15. Example of a lobe diagram made by antitamgprocedure from time-domain simulation data
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Fig. 16. Lobe diagrams for systems with variousrdeg of stability
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Fig. 17. Changes of depth of cut, phase and dritieguency for systems on the limit of stability

choose the demanded degree of system stabilithbgsing the ratio (I I,) and draw lobe
diagrams for various “safety” against instabiligig. 16 shows three lobe curves for ratios
(I/1,) equal to 1, 2 and 10. Internal system paramétersystems with different degree of
stability can be registered during time-domain datian. Fig. 17 shows changes of depth of

cut, phase and critical frequency related to varispindle revolutions in systems on the
limit of stability.

7. SUMMARY

A new approach to analysis of self- excited vilorag involving non-linear elements
has been applied in the RCMT Research Centre ofufdaturing Technology in Prague.
Interpretation of self-excited vibrations as namekr feedback systems makes it possible to
apply highly developed Matlab/Simulink methods asiidy frequency and transient
phenomena in systems with various degree of shab8imulation and analysis of transient
responses can contribute considerably to bettererstahding of complex, nonlinear
dynamic systems and of their behaviour in vari@mggmes and special situations.
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