PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blue mining na Atlantyku : realna potrzeba czy potrzeba realizmu?

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Blue mining in the Atlantic Ocean : a real need or a need for realism?
Języki publikacji
PL
Abstrakty
EN
In 2018, Poland was granted the right to explore for ores in the area of the Mid-Atlantic Ridge area of 10 000 km2, which is the initial stage of the Program of Geological Exploration of Oceans (PRoGeO) accepted by the Government of Poland in July 2017. On the part of decision-makers, expectations are huge in ensuring safe deliveries of a number of metals (Cu, Au, Ag, Pt, REE, Ni, Co, Zn and Mo). The authors carried out a detailed analysis of the published results of research on similar objects in the exclusive economic zones of Japan and Papua New Guinea. Comparative analysis, covering geological-economic, organizational, financial, geo-environmental aspects reveals that in the Polish zone of the MAR one can expect to find rich, but relatively small deposits of Cu, Zn, Ag, and Au, which meet the needs of a small part of domestic demand for these metals in less than 2 years. The geological and economic analysis shows that there is no risk of a collapse of the supply market for these metals. On the other hand, the risk of organizational and financial failure of the oceanic research project was defined as very large. The authors do not deny the need to conduct basic oceanic research. On the contrary, such research should be carried out even if the economic goal is very distant in time and vaguely outlined. However, the method ofpreparing and evaluating the program of such research should not differf rom the standards adoptedfor serious research grants, so it should have an original character, be prepared by leading research centers in a given field and be thoroughly evaluated by independent experts. Then a wide discussion will be possible in the scientific community regarding the purposefulness, scope and costs of the work.
Rocznik
Strony
91---103
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr.
Twórcy
  • Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, ul. Rakowiecka 4, 00-975 Warszawa
  • AGH Akademia Górniczo-Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska, 30-059 Kraków, al. Mickiewicza 30
Bibliografia
  • 1. BILANS 2015 - Bilans gospodarki surowcami mineralnymi Polski i świata 2013. IGSMiE PAN, Państw. Inst. Geol., Warszawa 2015.
  • 2. BEAULIEU S.E., BAKER E.T., GERMAN C.R. 2015 - Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Res. Part II., 121: 202-212.
  • 3. BIRNEY K., GRIFFIN A., GWIAZDA J., KAFAUVER J., NAGAI T., VARCHOL D. 2007 - Potential Deep Sea Mining of Seafloor Massive Sulphides: Acase study in Papua New Guinea. https://www.bren.uscb.edu/re- search/document/VentsThesis.pdf
  • 4. CARDNO 2016 - An assessment of the costs and benefits of mining deep-sea minerals in the Pacific Island Region. Deep-sea Mining Cost-Benefit Analysis. Pacific Community, Suva, Fiji.
  • 5. CARRINGTON D. 2017 - Is deep sea mining vital for a greener future - even if it destroys ecosystems? The Guardian, 4.06.2017.
  • 6. CHERKASHOV G. 2017 - Seaflor Massive Sulphide Deposits: Distribution and Prospecting [W:] Sharma R. (red.), Deep Sea Mining, Resource Potential. Tech. Environ. Considerat.: 143-164.
  • 7. CHERKASHOV G., POROSHINA I., STEPANOVA T., IVANOV V., BEL’TENEV V., LAZAREVA L., ROZHDESTVENSKAYA I., SAMOVAROV M., SHILOV V., GLASBY G.P., FOUQUET Y., KUZNETSOV V. 2010 - Seafloor massive sulfides from the Northern Equatorial Mid-Atlantic Ridge: new discoveries and perspectives. Marine Geores. Geotech., 28: 222-239.
  • 8. CHILMON J., 2018 - Przyszłość górnictwa oceanicznego. Polityka Surowcowa, 1: 22-25.
  • 9. CHUNG J.S. 1996 - Deep-Ocean Mining: Technologies for Manganese Nodules and Crusts. Inter. J. Off. Pol. Eng., ISOPE 6 (4): 244-254.
  • 10. CHUNG J.S. 2009 - Deep-Ocean Mining Technology III: Developments. Proceedings of the Eighth ISOPE Ocean Mining Symposium, Chennai, India: 1-7.
  • 11. COFFEY 2008. Environmental Impact Statement Nautilus Minerals Niugini Ltd. Solwara 1 Project Executive Summary. Coffey Natural Systems.
  • 12. COXD.P., SINGER D.A. 1986 - Mineral deposit models. USGS Bulletin 1693.
  • 13. CUYVERS L. BERRY W., GJERDE K.M., THIELE T., WILHEM C. 2018 - Deep seabed mining: a rising environmental challenge. Gland, Switzerland. IUCN and Gallifrey Foundation.
  • 14. DUNN D.C., ANDRON J., BAX N., BERNAL P., CLEARY J. CRESWELL I. DONNELLY B., DUNSTAN P., GJERDE K., JOHNSON D., KASCHNER K., LASCELLES B., RICE J., VON NORDHEIM H., WOOD L., HELPIN P.N. 2014 - The Convention on Biological Diversity’s Ecologically or Biologically Significant Areas: Origins, development and current status. Marine Policy, 49: 137-145.
  • 15. DUNN D.C., VAN DOVER C.L., ETTER R. J., SMITH C.R., LEVIN L.A., MORATO T. 2018 - A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Sci. Advan., 4 (7): 4313.
  • 16. DURDEN J.M., LALLIER L.E., MURPHY K., JAECKEL A., GJERDE K., DANIEL O.B. JONES D.O.B. 2018 - Environmental Impact Assessment process for deep-sea mining in ’the Area’. Marine Policy, 87: 194-202.
  • 17. GERMAN C.R., PETERSEN S., HANNINGTON M.D. 2016 - Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming? Chem. Geol., 420: 114-126.
  • 18. GOLDER ASSOCIATES 2012 - Mineral resource estimate Solwara Project, Bismarck Sea, PNG. Technical Report compiled under NI43-101 for Nautilus Minerals Nuigini Limited.
  • 19. HANNINGTON M., MONECKE T. 2009 - Global exploration models for polymetallic sulphides in the Area: An assessment of lease block selection under the Draft Regulations on Prospecting and Exploration for Polymetallic Sulphides. Mar. Geores. Geotech., 27 (2): 132-159.
  • 20. HANNINGTON M., JAMIESON J., MONECKE T., PETERSEN S. 2010 - Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential. Econom. Geol. Spec. Publ., 15: 317-338.
  • 21. HANNINGTON M., JAMIESON J., MONECKE T., PETERSEN S., BEAULIEU S. 2011 - The abundance of seafloor massive sulphide deposits. Geology, 39 (12): 1155-1158.
  • 22. HANNINGTON M., PETERSEN S. 2016 - A discussion paper on marine minerals. National Ocean Exploration Forum, October 20-21; https://oceanexplorer.noaa.gov/national-forum/media
  • 23. HOAGLAND P., BEAULIEU S., TIVEY M.A., EGGERT R.G., GERMAN CH., GLOWKAL., LIN J. 2010 - Deep-sea mining of seafloor massive sulfides. Marine Policy, 34: 728-732.
  • 24. HODGSON S., SERDY A., PAYNE I., GILLE J. 2014 - Towards a Possible International Agreement on Marine Biodiversity in Areas Beyond National Jurisdiction. European Parliament. IP/A/ENVI/2014-04. IISD/SDG 2018. Benson Wahlén C. IUCN Calls for Knowledge and Caution as ISA Meets; http://sdg.iisd.org/news/iucn-calls-for-knowledge-and-caution-as-isa-meets/
  • 25. INNIS L., SIMCOCK A. (coord.) 2016 - The First Global Integrated Marine Assessment. World Ocean Assessment I. United Nations.
  • 26. ISA 2015 - Deep seabed mining fiscal framework. www.resolv.org/site-dsm/files/2016/09/ Bellagio-Fiscal-Framework-WG-161115-Final.pdf ISA 2018a - International Seabed Authority Exploration Areas. Seabed technology; www.isa.org.jm/contractors/exploration-areas,www.isa.org.jm/documents-resources/publications
  • 27. ISA 2018b - Preliminary strategy for the development of regional management plans for the Area. International Seabed Authority ISBA/24/C/3. ISBA/16/A/12 Rev.1. 2010. Decision of the Assembly of the International Seabed Authority relating to the regulations on prospecting and exploration for polymetallic sulphides in the Area.
  • 28. JAMIESON J.W., CLAGUE D,A., HANNINGTON M.D. 2014 - Hydrothermal sulphide accumulation along the Endeavour Segment, Juan de Fuca Ridge. Earth Planet. Sci. Lett., 395: 136-148.
  • 29. KATO Y., FUJINAGA K., NAKAMURA K., TAKAYA Y., KITAMURA K., OHTA J., TODA R., NAKASHIMA T., IWAMORI H. 2011 - Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci., 4 (8): 535-539.
  • 30. KOTLIŃSKI R. 1999 - Metallogenesis of the world’s ocean against the background of the oceanic crust evolution. Polish Geol. Inst. Spec. Paper, 4: 1-70.
  • 31. KOTLIŃSKI R. 2001 - Mineral resources of the world’s ocean - their importance for global economy in the 21st century. [W:] Proc. of the ISOPE Ocean Mining Symposium, Szczecin: 1-7.
  • 32. KOTLIŃSKI R., SZAMAŁEK K.(red.) 1998 - Surowce mineralne mórz i oceanów. Wyd. Nauk. Scholar, Warszawa, s. 384.
  • 33. KYODO 2017 - Japan successfully undertakes large-scale deep-sea mineral extraction. Japan Times 26.09.2017. https://www.japantimes.-co.jp/news/2017/09/26/national/japan-successfully-undertakes-large-scale-deep-sea-mineral-extraction/#.XDRG4P3xLIV
  • 34. LUICK J.L. 2012 - Physical Oceanographic Assessment of the Nautilus EIS for the Solwara 1 Project. Deep Sea Mining Campaign. 27 p; www.deepseaminingoutofourdepth.org
  • 35. MALON A., TYMIŃSKI M., MIKULSKI S., OSZCZEPALSKI S.2018-Surowce metaliczne. Rudy miedzi i srebra. [W:] Szuflicki M., MalonA., Tymiński M. (red.), Bilans zasobów kopalin w Polsce wg stanu na 31 XII 2017.
  • 36. MILLER K.A., THOMPSON K.F., JOHNSTON P., SANTILLO D.2018-An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Frontiers in Marine Science; https://doi.org/10.3389/fmars.2017.00418
  • 37. MIT 2016 - Analyzing the promise of Deep Sea Mining. http://web.mit.edu/12.000/www/m2016/finalwebsite/solutions/oceans.html
  • 38. NAUTILUS 2015 - The tools of ocean exploration. www.nautiluslive.org/tech
  • 39. NAUTILUS 2018a - Seabed Mining. The Ocean Foundation. 18.01.2018.
  • 40. NAUTILUS 2018b - Nautilus announces Preliminary Economic Assessment for its Solwara 1 Project. Press Release2018-11 (27.02.2018).
  • 41. NINER H.J., ARDRON J.A., ESCOBAR E.G., GIANNI M, JAECKEL A., JONES D.O.B., LEVIN L.A, SMITH C.R., THIELE T., TURNER PJ., VAN DOVER C.L., WATLING L., GJERDE K.M. 2018 - Deep-Sea Mining With No Net Loss of Biodiversity - An Impossible Aim. Frontiers in Marine Sci., 5: 1-12.
  • 42. OSZCZEPALSKI S., SPECZIK S., MAŁECKAK., CHMIELEWSKI A. 2016-Prospective copper resources in Poland. Gos. Surow. Mineral., 32 (2): 5-30.
  • 43. OSZCZEPALSKI S., CHMIELEWSKI A., SPECZIK S. 2017-Zmienność mineralizacji kruszcowej w rejonie północno-zachodniego przedłużenia złoża Lubin-Sieroszowice. Biuletyn Państw. Inst. Geol., 468: 109-142.
  • 44. PAULO A. KRZAK M.2015 - Metale rzadkie. Wydawnictwa AGH. PAULO A., STRZELSKA-SMAKOWSKA B. 2000 - Rudy metali nieżelaznych i szlachetnych. Wyd. AGH Kraków.
  • 45. PAULO A., WNUK R.2015 - Kopalnia rud cynku i ołowiu Pomorzany skończyła 40 lat-jak długo jeszcze wystarczy jej zasobów? Prz. Geol., 63:1483-1490.
  • 46. PETERSEN S., HANNINGTON M., KRÄTSCHELLA. 2017 - Technology developments in the exploration and evaluation of deep-sea mineral resources. Annales des Mines, 85: 14-18.
  • 47. PETERSEN S., LEHRMANN B., MURTON B.J. 2018 - Modern seafloor hydrothermal systems: new perspectives on ancient ore-forming processes. Elements, 14: 307-312.
  • 48. PRZYBYLSKI R. 2018 - Wydobycie z dna morskiego będzie uzupełniające. Polityka Surowcowa, 1: 28-29.
  • 49. PUBLIC REPORT. Blue Mining. Breakthrough Solutions for Mineral Extraction and Processing in Extreme Environments 2018; http://www.bluemining.eu/download/project_results/public_reports/Blue-mining-Public-Report-2018.pdf
  • 50. SHANKS W.C.P., THURSTON R. (red.) 2012 - Volcanogenic massive sulfide occurrence model. Scientific Investigations Report 2010-5070-C. USGS Reston.
  • 51. STRZELSKA-SMAKOWSKA B. 2003 - Ocena ekonomiczna złóż rud. Wyd. AGH, Kraków.
  • 52. SZAMAŁEK K.2011- Surowce mineralne z dna mórz i oceanów - stan rozpoznania i perspektywy. Górnictwo, Geoinżynieria,35 (4/1): 353-370.
  • 53. SZAMAŁEK K. 2018a- Stan rozpoznania oceanicznych zasobów mineralnych. Prz. Geol., 66 (3): 189-194.
  • 54. SZAMAŁEK K. 2018b - Udział Polski w pracach Międzynarodowej Organizacji Dna Morskiego. Prz. Geol., 66 (3): 185-188.
  • 55. TAKAYA Y., YASUKAWA K., KAWASAKI T., FUJINAGA K., OHTA J., USUI Y., NAKAMURA K., KIMURA J-I., CHANG Q., HAMADA M., DODBIBA G., NOZAKI T., IIJIMA K., MORISAWA T., KUWAHARA T., ISHIDA Y., ICHIMURA T., KITAZUME M., FUJITA T., KATO Y.2018-The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports; www.nature.com/scientificreports USGS 2017 - Mineral Commodity Summaries. U.S. Geological Survey, Reston, Virginia.
  • 56. UCHWAŁA 2017- Uchwała RM z dn. 25 lipca 2017r.w sprawie ustanowienia wieloletniego programu „Program Rozpoznania Geologicznego Oceanów” - PRoGeO; http://monitorpolski.gov.pl/mp/2017/774
  • 57. VAN DOVER C.L. 2014 - Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review. Marin. Environ. Res., 102: 59-72.
  • 58. VAN DOVER C.L., ARDRON J. A., ESCOBAR E., GIANNI M., GJERDE K. M., JAECKEL A., JONES D.O.B., LEVIN L.A., NINER H.J., PENDLETON L., SMITH C.R., THIELE T., TURNER PJ., WATLING L., WEAVER P.P.E. 2017 - Biodiversity loss from deep-sea mining. Nat. Geosci., 10: 464-465.
  • 59. VAN NIJEN K., VAN PASSEL S., SQUIRES D. 2018 - A stochastic techno-economic assessment of seabed mining of polymetallic nodules in the Clarion Clipperton Fracture Zone. Marine Policy. https://doi.org/10.1016/j.marpol.2018.02.027
  • 60. VAN WIJK J.M., MIEDEMA S.A. 2012 - Deep Sea Mining Technologies. Sea Technology, 1.
  • 61. VERICHEV S., DE JONGE L., BOOMSMAW., NORMAN R. 2014 - Deep sea mining: from exploration to exploitation. Int. Conf. Minerals of the ocean - 7 & Deep-sea minerals and mining - 4 at St. Petersburg: 126-137.
  • 62. WOŁKOWICZ S., PAULO A., KRZAK M. 2016 - The role of geochemical and mineralogical studies in the research of rare earth elements deposits: Polish and world experiences. Mineral. Spec. Pap., 46: 61-63. VIII Polish Conference, Kraków.
  • 63. WOODY T. 2018 - European Parliament Calls for a Moratorium on Deep-Sea Mining. Ocean Deeply, 1.02.2018.
  • 64. YOSHIZUMI R., MIYOSHI Y., ISHIBASHIJ. 2015 - The characteristics of the seafloor massive sulfide deposits at the Hakurei site in the Izena Hole, the Middle Okinawa Trough. [W:] Ishibashi et al. (red.) Subseafloor biosphere linkedto hydrothermal systems: TAIGAConcept: 561-565.
  • 65. ZIERENBERG R.A. et al. (27 coauthors) 1998 - The deep structure of sea-floor hydrothermal deposit. Nature, 392: 485-488.
  • 66. ZUBKOV M.V., PLUCINSKI P.K., DARTIGUELONGUE A.C.Y., LUSTY P.A.J. 2018 - Metal extraction from deep-ocean mineral deposits. Elements, 14: 319-324.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a9e53bc-278d-49df-a843-f52efd142de6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.