PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality control test of cone beam computed tomography - constancy tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper describes tests of CBCT cone beam scanners carried out to ensure projection quality. Design/methodology/approach: During the studies, phantoms were scanned with a leading brand volumetric CT scanner according to the device manufacturer's recommendations. The water phantom and phantom made of PMMA with materials of different radiological densities were used in the performed tests. The image area during the tests was determined as a cylinder with diameter of 80 mm and height of 90 mm. In turn, exposure parameters were selected on the basis of clinically applied protocols of cranial imaging. Within carried out research, tests of noise level were performed, image homogeneity was analysed and Hounsfield units constancy was determined. To this end, 18 quality control tests were analysed, which were performed at intervals of about 30 days. Images obtained during phantom scans were analysed by determining the Hounsfield value of selected areas and their changes over time. Findings: The analysis of all carried out projection quality control tests showed that they met the criteria set by the manufacturer, falling within the predefined value ranges. One of the performed tests presented results approaching the limit of acceptable values. After notifying this case, it was shown that the CT scanner was serviced during that period. The obtained results of the quality control tests of water phantom as well as of the material phantom imaging were maintained at similar levels after the service activities. No changes were observed in the obtained mean values of Hounsfield units, which would indicate a decrease in diagnostic quality of CBCT projections. Research limitations/implications: The results presented in this publication require further analysis. These should be complemented by incl. analyses of spatial resolution and image geometry. Practical implications: Carried out research has shown that cyclical quality control testing by a qualified operator is an essential activity to ensure high diagnostic quality of the device. In addition, this analysis showed that procedures of in-service tests should not be omitted and delayed. Originality/value: Originality in these tests is the possibility to improve the procedures for performing basic quality control tests.
Rocznik
Strony
66--75
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 21, 42-201 Częstochowa, Poland
autor
  • Alfamedica Czestochowa Medical Center, ul. Kilińskiego 166, 42-201 Częstochowa, Poland
autor
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Al. Armii Krajowej 21, 42-201 Częstochowa, Poland
autor
  • Alfamedica Czestochowa Medical Center, ul. Kilińskiego 166, 42-201 Częstochowa, Poland
Bibliografia
  • [1] A. Katsumata, A. Hirukawa, S. Okumura, M. Naitoh, M. Fujishita, E. Ariji, R.P. Langlais, Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 104/6 (2007) 829-836. DOI: https://doi.org/10.1016/j.tripleo.2006.12.005
  • [2] G.R. Torgersen, A. Møystad, C. Hol, CBCT constancy controls: how user-friendly is the new phantom?, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 121/3 (2015) 343-344. DOI: https://doi.org/10.1016/j.oooo.2015.11.014
  • [3] R. Cierniak, X-Ray computed tomography in biomedical engineering, Springer, 2011.
  • [4] M.A. Hobson, E.T. Soisson, S.D. Davis, W. Parker, Using the ARC CT accreditation phantom for routine image quality assurance on both CT and CBCT imaging systems in a radiotherapy environment, Journal of Applied Clinical Medical Physics 15/4 (2014) 226-239. DOI: https://doi.org/10.1120/jacmp.v15i4.4835
  • [5] S. Yadav, L. Paolo, M. Mahdian, M. Upadhyay, A. Tadinada, Diagnostic accuracy of 2 cone-beam computed tomography protocols for detecting arthritic changes in temporomandibular joints, American Journal of Orthodontics and Dentofacial Orthopedics 147/3 (2015) 339-344. DOI: http://dx.doi.org/10.1016/j.ajodo.2014.11.017
  • [6] M. Oliveira, G. Tosoni, D. Lindsey, K. Mendoza, S. Tetradis, S. Mallya, Influence of anatomical location on CT numbers in cone beam computed tomography, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 115/4 (2013) 558-564. DOI: https://doi.org/10.1016/j.oooo.2013.01.021
  • [7] Z. Mansour, A. Mokhtar, A. Sarhan, M.T. Ahmed, T. El-Diasty, Quality control of CT image using American College of Radiology (ACR) phantom, The Egyptian Journal of Radiology and Nuclear Medicine 47/4 (2016) 1665-1671. DOI: https://doi.org/10.1016/j.ejrnm.2016.08.016
  • [8] A. Parsa, N. Ibrahim, B. Hassan, A. Motroni, P. van der Selt, D. Wismeijer, Influence of cone beam CT scanning parameters on grey value measurements at an implant site, DentoMaxilloFacial Radiology 42/3 (2013) 79884780. DOI: https://doi.org/10.1259/dmfr/79884780
  • [9] W.O. Gomes Batista, Development and validation of two phantoms for quality control in cone-beam CT, Applied Radiation and Isotopes 138 (2018) 29-34. DOI: https://doi.org/10.1016/j.apradiso.2017.07.052
  • [10] H. de las Heras Gala, A. Torresin, A. Dasu, O. Rampado, H. Delis, I. Hernández Girón, C. Theodorakou, J. Andersson, J. Holroyd, M. Nilsson, S. Edyvean, V. Gershan, L. Hadid-Beurrier, C. Hoog, G. Delpon, I.S. Kolster, P. Peterlin, J. Garayoa Roca, P. Caprile, C. Zervides, Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report), Physica Medica 39 (2017) 67-72. DOI: https://doi.org/10.1016/j.ejmp.2017.05.069
  • [11] S. Wiśniewska-Kubka, D. Oborska-Kumaszyńska, Kontrola systemu AEC w radiologii cyfrowej, Inżynier i Fizyk Medyczny 1/2 (2012) 81-86 (in Polish).
  • [12] J. Bamba, K. Araki, A. Endo, T. Okano, Image quality assessment of three cone beam CT machines using the SEDENTEXCT CT phantom, DentoMaxilloFacial Radiology 42/8 (2013) 20120445. DOI: https://doi.org/10.1259/dmfr.20120445
  • [13] A. Yamashina, K. Tanimoto, P. Sutthiprapaporn, Y. Hayakawa, The reliability of computed tomography (CT) values and dimensional measurements of the oropharyngeal region using cone beam CT: comparison with multidetector CT, DentoMaxilloFacial Radiology 37/5 (2008) 245-251. DOI: https://doi.org/10.1259/dmfr/45926904
  • [14] C.J. Greenall, B. Thomas, N.A. Drage, J. Brown, An audit of image quality of three dental cone beam computed tomography units, Radiography 22/1 (2016) 56-59. DOI: https://doi.org/10.1016/j.radi.2015.05.008
  • [15] M. Sidi, U. Hussain, A. Ya'u, I. Garba, Evaluation of the computed tomography number for water, field uniformity, image noise and contrast resolutions in Kano Metropolis, Nigeria, Nigerian Journal of Basic and Clinical Sciences 17/1 (2020) 21-25.
  • [16] R. Pauwels, O. Nackaerts, N. Bellaiche, H. Stamatakis, K. Tsiklakis, A. Walker, H. Bosmans, R. Bogaerts, R. Jacobs, K. Horner, Variability of dental cone beam CT grey values for density estimations, The British Journal of Radiology 86/1021 (2013) 20120135. DOI: https://doi.org/10.1259/bjr.20120135
  • [17] R. Montelini,Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 116/1 (2013) 105-119. DOI: https://doi.org/10.1016/j.oooo.2013.04.013
  • [18] O. Nackaerts, F. Maes, H. Yan, P. Couto Souza, R. Pauwels, R. Jacobs, Analysis of intensity variability in multislice and cone beam computed tomography, Clinical Oral Implant Research 22/8 (2011) 873-879. DOI: https://doi.org/10.1111/j.1600-0501.2010.02076.x
  • [19] G.R. Torgersen, C. Hol, A. Møystad, K. Hellén-Halme, M. Nilsson, A phantom for simplified image quality control of dental cone beam computed tomography units, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 118/5 (2014) 603-611. DOI: https://doi.org/10.1016/j.oooo.2014.08.003
  • [20] B. Ludlow, C. Walker, Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography, American Journal of Orthodontics and Dentofacial Orthopedics 144/6 (2013) 802-817. DOI: https://doi.org/10.1016/j.ajodo.2013.07.013
  • [21] R. Pauwels, R. Jacobs, S.R. Singer, M. Mapparapu, CBCT-based bone quality assessment: are Hounsfield units applicable?, DentoMaxilloFacial Radiology 44/1 (2015) 20140238. DOI: https://doi.org/10.1259/dmfr.20140238
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a9af51d-93d0-446d-b58e-f4b5af0cd59c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.