PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza możliwości zastosowania stali nierdzewnej oraz stopu Cu-B jako katalizatora elektrody paliwowej mikrobiologicznego ogniwa paliwowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of the possibility of using stainless steel and copper boride alloy as catalyst for microbial fuel cell fuel electrode
Języki publikacji
PL
Abstrakty
PL
Rozwój technologii mikrobiologicznych ogniw paliwowych (MFC – microbial fuel cell), może stanowić przyszłość zarówno wytwarzania energii elektrycznej z substancji odpadowych, jak i technologii oczyszczania ścieków. Ogniwa te charakteryzują się niskimi kosztami inwestycyjnymi. Ze względu na znakomite własności katalityczne, w wysokowydajnych ogniwach paliwowych (np. wodorowo-tlenowych), jako katalizator stosowana jest platyna. Jednak koszt platyny praktycznie uniemożliwia stosowanie jej w MFC. Z tego względu należy poszukiwać innych katalizatorów nie zawierających metali szlachetnych. W mikrobiologicznych ogniwach paliwowych najczęściej stosuje się elektrody grafitowe. Praca przedstawia analizę możliwości wykorzystania stali nierdzewnej oraz stopu Cu-B jako katalizatora elektrody paliwowej w mikrobiologicznych ogniwach paliwowych. Pomiary objęły elektroutlenianie glukozy na katalizatorze stalowym oraz na stopie Cu-B. Stop Cu-B nanoszono elektrolitycznie na nośnik stalowy. Zakres temperatur pomiarów: 293-303K. Pomiary przeprowadzono przy pomocy potencjostatu w reaktorze szklanym. Uzyskiwana gęstość prądu wynosiła 0,17mA/cm2 dla katalizatora stalowego oraz 0,25mA/cm2 w przypadku użycia stopu Cu-B jako katalizatora. Wykazano, że istnieje możliwość wykorzystania stopu Cu-B oraz stali jako katalizatorów mikrobiologicznych ogniw paliwowych. Znalezienie odpowiedniego i taniego katalizatora może przyczynić się do szybkiego rozwoju odnawialnych źródeł energii jakimi są mikrobiologiczne ogniwa paliwowe.
EN
Considering the increasing standard of living, the energy consumption increases as well, and so does waste production. However, there is a possibility to combine energy production and wastewater treatment. A device that can accomplish this task is a microbial fuel cell (MFC). In MFC's activated sludge bacteria can be used for electricity production during wastewater treatment. In MFC's the organic material is oxidized on anode, and the product of oxidation is CO2 and electrons. One of the problems with MFC’s is a low current density of those energy sources (lower than 1 mA/cm2). Nonetheless, it is possible to increase the current density by using the catalyst for fuel electrode (anode) – as long as a low cost catalyst can be found. The possibility of using stainless steel and Cu-B alloy as catalyst for MFC’s is presented in this paper. Cu-B alloys were obtained by the method of electrochemical deposition on electrode. The increase of current density with stainless steel is approximately 0.17 mA/cm2and with the Cu-B catalyst is approximately 0.25 mA/cm2at the temperature of 293-303K. Use of stainless steel and Cu-B catalyst will increase the efficiency in the use of microorganisms for the production of electricity. This will contribute to the development of high efficiency green energy sources. This action will also allow to increase the environment protection.
Rocznik
Strony
111--118
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of Process Engineering, Opole University, Dmowskiego Street 7-9, 45-365 Opole, tel.: (+48) (77) 401-67-06
  • Department of Process Engineering, Opole University, Dmowskiego Street 7-9, 45-365 Opole, tel.: (+48) (77) 401-67-06
Bibliografia
  • 1. Grove W., On the Gas Voltaic Battery, Philosophical Magazine, Series 3 (127) (1839).
  • 2. O’Hayre R., Cha S-W.,Colella W., Prinz F.B., Fuel Cell Fundamentals, John Wiley & Sons, Hoboken (2005).
  • 3. Stolten D., Hydrogen and fuel cells. Fundamentals, Technologies and Applications, Wiley-VCH, Weinheim (2010).
  • 4. Rifkin J., The Hydrogen Economy, Jeremy P. Tarcher/Penguin, New York (2003).
  • 5. Steele B., Heinzel A., Materials for fuel-cell technologies, Nature 414 (2001) 345-352.
  • 6. Ernst K. H., Schwarz E., Christmann, K., The interaction of hydrogen with a cobalt (1010) surface, J. Chem. Phys. (1994) 101, 5388−5401.
  • 7. Ross D.K., Vacuum, ELSEVIER (2006) 80, 10, 1084-1089.
  • 8. Włodarczyk P., Włodarczyk B., Powering fuel cell with crude oil, Journal of Power Technologies, 93 (5) (2013) 394-396.
  • 9. Hamnett A., Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Today, 38 (4) pp.445–457 (1997).
  • 10. Larminie J., Dicks A., Fuel cell system explained, John Wiley & Sons Ltd. (2003).
  • 11. Milewski J., Lewandowski J., Biofuels as fuels for high temperature fuel cells, Journal of Power Technologies, 93 (5) 347-353 (2013).
  • 12. Włodarczyk P., Włodarczyk B., Electrooxidation of hydrazine with copper boride catalyst, Conference proceedings, 21st International Congress of Chemical and Process Engineering CHISA, P1.131 (2014).
  • 13. Włodarczyk P., Włodarczyk B., Possibility of using copper boride alloy as catalyst for oxygen electrode of fuel cell, Conference proceedings, 21st International Congress of Chemical and Process Engineering CHISA, P1.134 (2014).
  • 14. Rabaey K., Verstraete W., Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23 pp.291-298 (2005).
  • 15. Włodarczyk P., Włodarczyk B., Possibility of using Ni-Co alloy as catalyst for microbial fuel cell, Conference proceedings, 21st International Congress of Chemical and Process Engineering CHISA, P1.132 (2014).
  • 16. Davis J. B., Yarbrough H. F., Preliminary experiments on a microbial fuel cell. Science, 137 pp.615-616 (1962).
  • 17. Bond D. R., Lovley D. R., Electricity production by Geobactersulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69 pp.1548-1555 (2003).
  • 18. Chaudhuri S. K., Lovley D. R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21 pp.1229-1232 (2003).
  • 19. Kim H.J., Park H.S., Hyun M. S., Chang I. S., Kim M., Kim B. H., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanellaputrefacians. Enzyme Microbiol. Technol., 30 pp.145-152 (2002).
  • 20. Park H.S., Kim B.H., Kim H.S., Kim H.J., Kim G.T., Kim M., Chang I.S., Park Y.K., Chang H.I., A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 7 (2001) pp. 297-306
  • 21. Pham C.A., Jung S.J., Phung N.T., Lee J., Chang I.S., Kim B.H., Yi H., Chun J., A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aero- monas hydrophila, isolated from amicrobial fuel cell. FEMS Microbiol. Lett., 223 (2003) pp.129-134. DOI: 10.1016/S0378-1097(03)00354-9
  • 22. Berk R.S., Canfield J.H., Bioelectrochemical energy conversion. Appl. Microbiol., 12 pp.10-12 (1964).
  • 23. Cohen B., The bacterial culture as an electrical half-cell. J. Bacteriol., 21 pp.18-19 (1931).
  • 24. Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Verstraete W., Rabaey K., Microbial Fuel Cells: Methodology and Technology, Environ. Sci. Technol., 40 (17) pp.5181–5192 (2006). DOI: 10.1021/es0605016
  • 25. Liu H., Ramnarayanan R., Logan B.E., Production of electricity during wastewater treatment using a single chamber microbial fuel Cell. Environ. Sci. Technol. 38 pp.2281-2285 (2004).
  • 26. Wang X., Feng Y.J., Lee H., Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol., 57 pp.1117-1121 (2008).
  • 27. Asazawa K., Yamada K., Tanaka H., Oka A., Taniguchi M., Kobayashi T., A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles, Angewandte Chemie, 119 (42) pp. 8170–8173 (2007).
  • 28. Liu Y., Harnisch F., Fricke K., Sietmann R., Schröder U., Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure, Biosensors and Bioelectronics, 24 (1) pp.1006-1011 (2008).
  • 29. Ringeisen B.R., Henderson E., Wu P.K., Pietron J., Ray R., Little B., Biffinger J.C., Jones-Meehan J.M., High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10, Environ. Sci. Technol., 40 pp. 2629-2634 (2006).
  • 30. SerovA., Kwak C., Direct hydrazine fuel cells, Applied Catalysis B: Environmental, 98 (1-2) pp.1–9 (2010).
  • 31. Zhao F., Sladea R.C.T., Varcoea J.R., Techniques for the study and development of microbial fuel cells: an electrochemical perspective, Chem. Soc. Rev., 38 pp.1926-1939 (2009). DOI: 10.1039/B819866
  • 32. Bockris J. O’M, Reddy A. K.N., Modern Electrochemistry, Kulwer Academic/Plenum Publishers, New York, 2000.
  • 33. Redey L., Tüzelőanyag-elemek, Műszaki Könyvkiadó, Budapest (1970).
  • 34. Markovic N. M., Gasteiger H. A., Grgur B. N., Ross P. N., Oxygen reduction reaction on pt(111): Effects of bromide, J. Electroanal.Chem., 467, 157 (1999).
  • 35. Stamenkovic V., Schmidt T. J., Ross P. N., Markovic N. M., J. Phys. Chem. B,106, 11970 (2002).
  • 36. Toda T., Igarashi H., Uchida H., Watanabe M., Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, J. Electrochem. Soc., 146, 3750-3756 (1999). DOI: 10.1149/1.1392544
  • 37. PN-EN 10088-1:2007 Species of stainless steels.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a98d521-bbc1-4097-89a4-029a441d0a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.