PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Simulation of SESAME’s Synchrotron Storage Ring for the Pressure Predictions in Vacuum System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many particle accelerators rely on maintaining low pressures to ensure efficient operation, minimize beam losses, and reduce radiation background. To ensure a beam lifetime of 1–20 hours for the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) vacuum system, an ideal average dynamic pressure of 1×10-9 mbar was targeted. This pressure was intended to be maintained while running the accelerator at a current of 400 mA after a cumulative dose of 100 Ah. In this study, a MATLAB code was employed to develop a series of one-dimensional equations that simulate the behavior of the vacuum system within the SESAME storage ring. The proposed model was then compared with the results generated by the VACCALC software and the Particle Monte Carlo (TPMC) MOLFLOW code, establishing a comprehensive assessment framework. The collected data from the model was subsequently compared with the recorded static and dynamic pressure measurements obtained during more than 1000 Ah of beam conditioning at 2.5 GeV. In results, the projected and actual values of dynamic pressures exhibited a satisfactory degree of agreement across the investigated range of beam conditioning doses, with a consistency factor exceeding 2 after a 100 Ah dose.
Twórcy
  • Mechanical Engineering, Mechanical Engineering Dept., Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
autor
  • Energy Engineering, Department, Faculty of Engineering Technology, Zarqa University, Zarqa, Jordan
  • Mechanical Engineering, Mechanical Engineering Dept., Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
autor
  • Mechanical Engineering, Mechanical Engineering Dept., Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
autor
  • Energy Engineering, Department, Faculty of Engineering Technology, Zarqa University, Zarqa, Jordan
  • Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, Tafila, Jordan
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
  • Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, United States of America
Bibliografia
  • 1. Vignola, G.; Amro, A.; Attal, M.; Makahleh, F.; Shehab, M.M.; Varnasseri, S. SESAME in Jordan. In: Proceedings of the 2005 Particle Accelerator Conference; IEEE, 2005; 586–589.
  • 2. Vignola, G.; Attal, M. SESAME Lattice. Tech. Note O-1 2004.
  • 3. Attal, M.; Huttel, E.; Manukyan, K.; Saleh, I.; Foudeh, D.; Makahleh, F.; Shehab, M.; Jafar, S.; Abid, I.; Ismail, A. Commissioning of SESAME Booster. In: Proceedings of the 7th Int. Particle Accelerator Conf. (IPAC’16), Busan, Korea, May 8-13, 2016; JACOW, Geneva, Switzerland, 2016; 2880–2882.
  • 4. Biasci, J.C.; Bouteille, J.F.; Carmignani, N.; Chavanne, J.; Coulon, D.; Dabin, Y.; Ewald, F.; Farvacque, L.; Goirand, L.; Hahn, M. A Low-Emittance Lattice for the ESRF. Synchrotron Radiat. News 2014, 27, 8–12.
  • 5. Foerster, C.L.; Halama, H.; Lanni, C. Photon‐stimulated desorption yields from stainless steel and copper‐plated beam tubes with various pretreatments. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1990, 8, 2856–2859.
  • 6. Herbeaux, C.; Marin, P.; Baglin, V.; Gröbner, O. Photon stimulated desorption of an unbaked stainless steel chamber by 3.75 KeV critical Energy photons. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 1999, 17, 635–643.
  • 7. Margaritondo, G. Elements of Synchrotron Light: For Biology, Chemistry, and Medical Research; Oxford University Press, 2002.
  • 8. Henstridge, M.; Pfeiffer, C.; Wang, D.; Boltasseva, A.; Shalaev, V.M.; Grbic, A.; Merlin, R. Synchrotron radiation from an accelerating light pulse. Science, 2018, 362, 439–442.
  • 9. Martelli, S.; Perilli, E. Time-elapsed synchrotronlight microstructural imaging of femoral neck fracture. J. Mech. Behav. Biomed. Mater. 2018, 84, 265–272.
  • 10. Budiman, A.S.; Illya, G.; Anbazhagan, S.; Tippabhotla, S.K.; Song, W.J.; Sahay, R.; Tay, A.A.O. Enabling lightweight polycarbonate-polycarbonate (PC-PC) photovoltaics module technology–enhancing integration of silicon solar cells into aesthetic design for greener building and urban structures. Sol. Energy 2022, 235, 129–139.
  • 11. Beal, R.E.; Hagström, N.Z.; Barrier, J.; Gold-Parker, A.; Prasanna, R.; Bush, K.A.; Passarello, D.; Schelhas, L.T.; Brüning, K.; Tassone, C.J. Structural origins of light-induced phase segregation in organic-inorganic halide perovskite photovoltaic materials. Matter 2020, 2, 207–219.
  • 12. Thomas, S.E.; Collins, P.; James, R.H.; Mendes, V.; Charoensutthivarakul, S.; Radoux, C.; Abell, C.; Coyne, A.G.; Floto, R.A.; Von Delft, F. Structure-guided fragment-based drug discovery at the synchrotron: screening binding sites and correlations with hotspot mapping. Philos. Trans. R. Soc. A 2019, 377, 20180422.
  • 13. Chan, K.L.A.; Lekkas, I.; Frogley, M.D.; Cinque, G.; Altharawi, A.; Bello, G.; Dailey, L.A. Synchrotron photothermal infrared nanospectroscopy of 170 drug-induced phospholipidosis in macrophages. Anal. Chem. 2020, 92, 8097–8107.
  • 14. Souza, B.E.; Donà, L.; Titov, K.; Bruzzese, P.; Zeng, Z.; Zhang, Y.; Babal, A.S.; Möslein, A.F.; Frogley, M.D.; Wolna, M. Elucidating the drug release from metal–organic framework nanocomposites via in situ synchrotron microspectroscopy and theoretical modeling. ACS Appl. Mater. Interfaces 2020, 12, 5147–5156.
  • 15. Alhusban, A.A.; Albustanji, S.; Hamadneh, L.A.; Shallan, A.I. High performance liquid chromatography–tandem mass spectrometry method for correlating the metabolic changes of lactate, pyruvate and l-glutamine with induced tamoxifen resistant MCF-7 cell line potential molecular changes. Molecules 2021, 26, 4824.
  • 16. Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H. SESAME, a third generation synchroron light source for the middle east region. Radiat. Phys. Chem. 2004, 71, 693–700.
  • 17. Makahleh, F.; Amro, A. Storage ring vacuum system performance evaluation.
  • 18. Sullivan, M.K. A method for calculating pressure profiles in vacuum pipes. PEP-II AP Note 1994, 6, 94.
  • 19. Huttel, E.; Einfeld, D. The vacuum system for the synchrotron radiation source ANKA. In: Proceedings of the Particle Accelerator Conference (Cat. No. 97CH36167); IEEE, 1997; 3, 3613–3615.
  • 20. Kersevan, R.; Pons, J.-L. Introduction to MOL-FLOW+: New graphical processing unit-based monte carlo code for simulating molecular flows and for calculating angular coefficients in the compute unified device architecture environment. J. Vac. Sci. Technol. A, 2009, 27, 1017–1023.
  • 21. Al-Najdawi, M.; Huttel, E.; Makahleh, F.; Shehab, M.; Al-Mohammad, H. Vacuum system of SESAME storage ring. In: Proceedings of the 9th Edition of the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conference (MEDSI’16), Barcelona, Spain, 11-16 September 2016; JACOW Publishing, Geneva, Switzerland, 2017; 71–73.
  • 22. Ma, Q.; Xu, Z.; Wang, R.; Poredoš, P. Distributed vacuum membrane distillation driven by direct-solar heating at ultra-low temperature. Energy 2022, 239, 121891.
  • 23. O’Hanion, J.F. User Guide to Vacuum Technology. 2nd Ed.; John Wiley and sons Inc., USA, 1989.
  • 24. Solyman, A.A.A.; Qudaimat, A.; Tamizi, K. Simple mathematical and Simulink model of stepper motor. Energies 2022, 15, 6159. https://doi.org/10.3390/ en15176159
  • 25. Makahleh, F.; Badran, A.; Attar, H.; Amer, A.; Al- Almaaitah, A. Modeling and simulation of a two stage adsorption chiller with heat recovery, Part 2. J. Appl. Sci. 2022, 12, 5156.
  • 26. Makahleh, F.M.; Badran, A.A.; Attar, H.; Amer, A.; Al-Maaitah, A.A. Modeling and simulation of a two-stage air cooled adsorption chiller with heat recovery. Part I: Physical and mathematical performance model. Appl. Sci. 2022, 12, 6542. https://doi. org/10.3390/app1213654
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a95440e-0a48-4be5-8058-a24836858c29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.