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Abstract. In this paper, the results of analytical and numerical solution of the problem of 

heat transport in the rod of finite length are presented. The analytical solution is obtained 

with the use of the Fourier series. The numerical model of the problem is based on the  

Finite Element Method (FEM). In addition, to check the compatibility of both solutions, 

distributions of the temperature for selected time moments are compared and discussed.  
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1. Introduction  

During the investigation of the physical or technical processes, one strives to 

find the rules governing the process and derive the analytical expressions describ-

ing the functional dependencies between the variables. In physics most of the laws 

of nature can be written in the form of differential equations [1]. 

In order to find the solution of differential equations, the analytical methods are 

used, which allow one to find a solution in the form of equations determining the 

sought quantity expressed by elementary functions. Such a form of solution makes 

it possible to obtain any results of the boundary value problem by means of mathe-

matical analysis tools [1]. Unfortunately, in many cases, the complexity of the con-

sidered problem (e.g. the irregularity of the examined area or the complexity of the 

partial differential equations) makes it impossible to obtain the analytical solutions. 

The only alternative in this situation is to use one of many numerical methods 

(e.g. finite difference method, finite element method [2, 3]) to find the approximate 

solution of the problem [4-8]. 

However, the results of the numerical method require verification. The best way 

to validate the results obtained with the use of the numerical method is the com- 
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parison with the analytical solution of the considered problem. In the case of good 

agreement of compared analytical and numerical solutions one has the proof that 

the numerical method is mathematically correct. 

2. Formulation of the problem 

The heat conduction problem in the finite rod of length l  lying on the x-axis is 

considered. The ends of the rod are located at the points 0=
A
x  and lx

B
=  respec- 

tively. The end A of the rod is thermally insulated, while the opposite end B is kept 

at constant temperature 0T . It is assumed that the temperature on the cross-sectional 

area of the rod is uniform due to its small dimensions. At the time 0=t , the initial 

temperature distribution T  along the rod is defined by the function )(xf , where 

( )lx ,0∈ . The temperature in the rod is the function of position and time ),( txTT =  

[1, 9]. The scheme of the problem is presented in Figure 1.  

 

 
Fig. 1. Scheme of the problem 

The transient heat transfer in the rod is described by the equation of heat 

conduction [3, 10, 11] in the form shown below: 
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The coefficient a
2
 is described by the following relation: 
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where: T  ][K  - temperature, t  ][s  - time, λ  [ ]1 1 1
Ksm J
−−−

 - the coefficient of 

thermal conductivity, c  [ ]11 K kg J −−

 - specific heat, ρ  [ ]3−m kg  - density.  

Equation (1) is supplemented by the boundary conditions of the first and second 

kind [3, 10, 11]:  
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The initial condition is also defined: 

 ( ) )(0, xfxT =  (5) 

3. Analytical solution 

In order to determine the analytical solution of equation (1) with the boundary 

conditions (3), (4), the new function ( )txs ,  is introduced [10]: 

 sTT +=
0

 (6) 

Consequently, the boundary conditions (3), (4) take the form: 

 ( ) 0, =tls  (7) 
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while the initial condition (5) is presented below:  

 ( )
0

)(, Txftxs −=  (9) 

Now, equation (1) can be written in the following form:  
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The solution of equation (10) is obtained with the use of the Fourier method 

[10] in the form of the function of two variables (11), where the first depends on x  

while the second is the function of t :  

 )()(),( tZxYtxs =  (11) 

By substituting relation (11) into equation (10) and by dividing it by YZa
2  

the following relation is obtained: 
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where the value of 
2

γ  is constant. Further equations are obtained from equation 

(12): 

 0
2''
=+ YY γ  (13) 

 0
22'

=+ ZaZ γ  (14) 

By substituting the solutions of the equations (13), (14) into (11) and by using 

the conditions (7), (8) the following equation is obtained [10]: 
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where D  is constant. Using condition (9) and assuming that )(xf  meets the condi- 

tions of expansion in the Fourier series and additionally 0)( =xf , the following 

analytical solution of equation (1) can be written in the form shown below: 

 ( )( ) 1

1

0

0
1cos

12

14 22
+

∞

=

−

−
−

−= ∑
n

n

n

ta xe
n

T
TT n γ

π

γ  (16) 

where: ( )
l

n
n

2
12
π

γ −=  for ,...2,1=n . 

4. Numerical solution 

To obtain a numerical solution of equation (1), the finite element method is 

used [2, 3]. Equation (1) is multiplied by the weighting function w  and integrated 

over the length of the rod: 
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Using integration by parts (18), (19) the first term in equation (17) may be 

written in the form (20). 

 
B

A

B

A

B

A

x

x

x

x

x

x

uvdxvuvdxu +′−=′ ∫∫  (18) 

 

.,

,,
2

2

dx

dw
v

x

T
u

wv
x

T
u

=′
∂

∂
=

=
∂

∂
=′

λ

λ
 (19) 



Analytical and numerical solution of the heat conduction problem in the rod 83

 ∫∫ ∂

∂
+









∂

∂
−=

∂

∂ B

A

B

A

B

A

x

x

x

x

x

x

x

T
wdx

x

T

dx

dw
dx

x

T
w λλλ

2

2

 (20) 

Heat flux q  [ ]2 1
ms J
−−

 at the points 
A
x  and 

B
x  is defined as follows: 

 
b

a

B

A

x

x

x

x

q
dx

dT
=−λ  (21) 

Finally, the weak form of the equation of heat conduction takes the following 

form: 
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Equation (22) is discretized over the space with the use of the Galerkin method 

where the weighting functions w  are the same as the shape functions N of the 

finite elements. Then the implicit time integration scheme is used to obtain a global 

set of equations. The final form of the global FEM equation is shown below [9]: 
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where: K  is the global thermal conductivity matrix, M  - global heat capacity ma-

trix, B  - right hand side vector, t∆  - time step, f  - time level. 

5. Examples of calculation 

The solutions of equation (1) are obtained using the boundary conditions (3), 

(4), the initial condition (5) and the material properties presented in Table 1.  

Table 1 
Parameters used in calculations 

T0 [K] 300 

l [m] 0.05 

λ [J m–1 s–1 K–1] 54.42 

ρ [kg m–3] 7200 

c [J kg–1 K–1] 544 

a2 [m2 s–1]  1.39·10–5 
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In Figures 2 and 3, the results of the analytical solution obtained with the use 

of the Fourier series and numerical model of the problem based on the FEM 

are shown.  

 

 

Fig. 2. Analytical solution for selected time moments  

 

Fig. 3. Numerical solution for selected time moments  

Also, to check compatibility of both solutions, in Figure 4 temperature distri- 

butions obtained as a result of both solutions for selected time moments are 

presented.  
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a) b) 

      

c) d) 

      

e) f) 

      

Fig. 4. Temperature distributions obtained as a result of analytical and numerical 
solutions for 0.125 s (a), 0.5 s (b), 1 s (c), 10 s (d), 60 s (e), 240 s (f) 
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6. Conclusions 

The analysis of obtained results confirms the good compatibility of both models, 

which proves their correctness. Changes of temperature distribution due to time are 

clearly visible. The differences in the temperature distributions gradually decrease 

as time passes and vanish almost completely at the end of the process. The numerical 

solution is obtained for the mesh containing 101 nodes, while only 100 consecutive 

terms are used to obtain an analytical solution. Increasing the number of nodes 

in the first case and the number of terms in the second do not improve the results 

significantly.  

Built models can be modified in a relatively simple way to solve two-dimens-

ional and three-dimensional heat conduction problems. In this case, the analytical 

method will be limited to simple geometry, but in the case of a numerical model 

such constraints do not exist.  
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