PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of a dynamic response of the cochlea using fluid-structure interaction model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A one-dimensional (1D) model of the cochlea of the inner ear has been built and validated against the previously built three-dimensional (3D) fluid-structure interaction (FSI) model of the cochlea. The 1D model has been used to assess the influence of the round window impedance on the pressure distribution in the cochlea. It was shown that high impedance, which enables compression reflection pressure wave at the round window, leads to the biggest pressure difference between the scala vestibule and the scala tympani in the cochlea, which may lead to a stronger excitation of the basilar membrane.
Słowa kluczowe
Rocznik
Strony
573--579
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Institute of Micromechanics and Photonics Warsaw University of Technology Świętego Andrzeja Boboli 8, 02-525 Warszawa, Poland
autor
  • Institute of Aeronautics and Applied Mechanics Warsaw University of Technology Nowowiejska 24, 00-665 Warszawa, Poland
autor
  • Institute of Aeronautics and Applied Mechanics Warsaw University of Technology Nowowiejska 24, 00-665 Warszawa, Poland
Bibliografia
  • 1. Kwacz M., Marek P., Borkowski P., Mrówka M., A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery, Biomechanics and Modeling in Mechanobiology, 12(6): 1243–1261, 2013, doi: 10.1007/s10237- 013-0479-y.
  • 2. Gan R.Z., Reeves B.P., Wang X., Modeling of sound transmission from ear canal to cochlea, Annals of Biomedical Engineering, 35(12): 2180–2195, 2007, doi:10.1007/s10439- 007-9366-y.
  • 3. Grey H., Williams P.L., Bannister L.H., Grey’s anatomy: the anatomical basis of medicine and surgery, Williams P.L., (chairman of the editorial board), 38 th ed., Churchill Livingstone, New York 1995.
  • 4. von B´ek´esy G., Wever E.G., Experiments in hearing, McGraw-Hill, New York, 1960.
  • 5. Nakajima H.H., Dong W., Olson E.S., Merchant S.N., Ravicz M.E., Rosowski J.J., Differential intracochlear sound pressure measurements in normal human temporal bones, JARO – Journal of the Association for Research in Otolaryngology, 10(1): 23–36, 2009, doi: 10.1007/s10162-008-0150-y.
  • 6. Kwacz M., Marek P., Borkowski P., Mrówka M., A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery, Biomechanics and Modeling in Mechanobiology, 12(6): 1243–1261, 2013, doi: 10.1007/s10237- 013-0479-y
  • 7. Kwacz M., Mrówka M., Wysocki J., Differences in the perilymph fluid stimulation before and after experimental stapedotomy, Acta of Bioengineering and Biomechanics, 14(2): 67–73, 2012, doi: 10.5277/abb120209.
  • 8. Mistr´ık P., Mullaley C., Mammano F., Ashmore J., Three-dimensional current flow in a large-scale model of the cochlea and the mechanism of amplification of sound, Journal of The Royal Society Interface, 6(32): 279–91, 2009, doi: 10.1098/rsif.2008.0201.
  • 9. Lyon R.F., Mead C., Cochlear hydrodynamics demystified, Caltech Computer Science Department Technical Report, Caltech-CS-TR-88-4, Caltech, Pasadena 1988.
  • 10. Suesserman M.F., Spelman F.A., Lumped-parameter model for in vivo cochlear stimulation, IEEE Transactions on Biomedical Engineering, 40(3): 237–245, 1993, doi: 10.1109/10.216407.
  • 11. Vanpoucke F.J., Zarowski A.J., Peeters S.A., Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements, IEEE Transactions on Biomedical Engineering, 51(12): 2174–2183, 2004, doi: 10.1109/TBME.2004.836518.
  • 12. de Boer E., van Bienema E., Solving cochlear mechanics problems with higher-order differential equations, Journal of the Acoustical Society of America, 72(5): 1427–1434, 1982, doi: 10.1121/1.388675.
  • 13. Diependaal R., Nonlinear and active cochlear models: Analysis and solution methods, PhD Thesis, TU-Delft, Netherlands, 1988.
  • 14. Lim K.M., Steele C.R., A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method, Hearing Research, 170(1–2): 190–205, 2002, doi: 10.1016/S0378-5955(02)00491-4.
  • 15. Kwacz M., Marek P., Borkowski P., Gambin W., Effect of different stapes prostheses on the passive vibration of the basilar membrane, Hearing Research, 310: 13–26, 2014, doi: 0.1016/j.heares.2014.01.004.
  • 16. Wada H., Metoki T., Kobayashi T., Analysis of dynamic behavior of human middle ear using a finite-element method, Journal of the Acoustical Society of America, 92(6): 3157–3168, 1992, doi: 10.1121/1.404211.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a8c1d83-b7bc-4a43-b310-248638fd64f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.