Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The present study deals with the influence of channel angle on the deformation behavior and strain homogeneity in the transverse direction of sample after two ECAP passes. Design/methodology/approach: To increase the efficiency of ECAP method, there is necessary to design the geometry of ECAP die with focused on high degree of plastic deformation homogeneity. This analysis was carried out through finite element simulations in the Deform program. In the simulation, three main factors such as an intersecting angle of Ф = 90°, 100°, 110° a 120°, outer corner angle R (ψ) and inner corner angler (r) were being varied. The equation describing the dependence of R and r on average value of the effective plastic strain for different channel angles was established. Moreover, strain inhomogeneity index (Ci) in the transverse direction of sample was also calculated. Findings: The results from simulations have indicated that if the outer corner angle increases, mean effective strain decreases. After two ECAP passes (route C), there was seen the increase in strain homogeneity of the sample’s cross section. Research limitations/implications: Equal channel angular pressing (ECAP) is one of the most well-known severe plastic deformation (SPD) method for formation the UFG structures. This method provides very high strains leading to the extreme work hardening and microstructural refinement. Originality/value: To increase the efficiency of ECAP method, there is necessary to design the geometry of ECAP die with focused on high degree of plastic deformation homogeneity.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
25--30
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Department of Metals Forming, Faculty of Metallurgy, Technical University of Košice, 042 00, Košice, Slovakia
autor
- Department of Metals Forming, Faculty of Metallurgy, Technical University of Košice, 042 00, Košice, Slovakia
autor
- Department of Metals Forming, Faculty of Metallurgy, Technical University of Košice, 042 00, Košice, Slovakia
Bibliografia
- [1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-189.
- [2] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The shearing characteristics associated with equal-channel angular pressing, Materials Science and Engineering A 257 (1998) 328-332.
- [3] T. Kvačkaj, A. Kováčová, M. Kvačkaj, I. Pokorný, R. Kočiško, T. Donič, Influence of strain rate on ultimate tensile stress of coarse-grained and ultrafine-grained copper, Materials Letters 64/21 (2010) 2344-2346.
- [4] A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, R. Valiev, On the cyclic response of ultrafine-grained copper, Materials Science Forum 269 (1998) 987-992.
- [5] R. Bidulský, J. Bidulská, M. Actis Grande, Effect of high-temperature sintering and severe plastic deformation on the porosity distribution, High Temperature Materials and Processes 28/5 (2009) 337-342.
- [6] Y.T. Zhu, T.C. Lowe, T.G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation, Scripta Materialia 51 (2004) 825-830.
- [7] Ch. Xu, M. Furukawa, Z.Horita, T.G. Langdon, Severe plastic deformation as a processing tool for developing superplastic metals, Journal of Alloys and Compounds 378/1-2 (2004) 27-34.
- [8] M. Matvija, M. Fujda, O. Milkovič, T. Kvačkaj, M. Vojtko, P. Zubko, R. Kočiško, The effect of ECAP and subsequent post-ECAP annealing on the micro-structure and mechanical properties of AlSi7Mg0.3 alloy, Acta Metallurgica Slovaca 18/1 (2012) 4-12.
- [9] L. Navrátilová, L. Kunz, F. Nový, R. Mintách, Development of cyclic slip bands in UFG copper in gigacycle fatigue, Acta Metallurgica Slovaca 19/2 (2013) 88-93.
- [10] J. Bidulská, T. Kvačkaj, R. Kočiško, R. Bidulský, M. Actis Grande, T. Donič, M. Martikán, Influence of ECAP-back pressure on the porosity distribution, Acta Physica Polonica A 117/5 (2010) 864-868.
- [11] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881-981.
- [12] W.J. Kim, J.C. Namkung, Computational analysis of effect of route on strain uniformity in equal channel angular extrusion, Materials Science and Engineering A 412 (2005) 287-297.
- [13] N. Medeiros, L.P. Moreira, Upper-bound analysis of die corner gap formation for strain-hardening materials in ECAP process, Computational Materials Science (in print).
- [14] E. Cerri, P.P. De Marco, P. Leo, FEM and metallurgical analysis of modified 6082 aluminium alloys processed by multipass ECAP: Influence of material properties and different process settings on induced plastic strain, Journal of Materials Processing Technology 209 (2009) 1550-1564.
- [15] S.K. Lu, H.Y. Liu, L. Yu, Y.L. Jiang, J.H. Su, 3D FEM simulations for the homogeneity of plastic deformation in aluminum alloy HS6061-T6 during ECAP, Procedia Engineering 12 (2011) 35-40.
- [16] N. El Mahallawy, F.A. Shehata, M. Abd El Hameed, M.I. Abd El Aal, H.S. Kim, 3D FEM simulations for the homogeneity of plastic deformation in Al-Cu alloys during ECAP, Materials Science and Engineering, A 527/6 (2010) 1404-1410.
- [17] T. Kvačkaj, R. Kočiško, A. Kováčová, Local analysis of plastic deformation in ECAP and ECAR processes, Chemické Listy 106 (2012) 464-467.
- [18] S.J. Oh, S.B. Kang, Analysis of the billet deformation during equal channel angular pressing, Materials Science and Engineering A 343 (2003) 107-115.
- [19] J. Bidulská, R. Kočiško, T. Kvačkaj, R. Bidulský, M. Actis Grande, ECAP process simulation alloy EN AW 2014 by MLP, Chemické Listy 105 (2011) 155-158 (in Slovak).
- [20] F. Djavanroodi, M. Ebrahimi,Effect of die parameters and material properties in ECAP with parallel channels, Materials Science and Engineering A 527 (2010) 7593-7599.
- [21] S. Li, I.J. Beyerlein, C.T. Necker, D.J. Alexander, M. Bourke, Heterogeneity of deformation texture in equal channel angular extrusion of copper, Acta Materialia 52 (2004) 4859-4875.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a885322-c640-40f4-b1f3-53922d4782d1