PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antimicrobial Activity of Monolayer and Multilayer Films Containing Polyhexamethylene Guanidine Sulphanilate

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Aktywność przeciwdrobnoustrojowa wielowarstwowych folii zawierających pochodną poliheksametylenoguanidyny (PHMG)
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the antimicrobial properties of multilayer films containing a PHMG sulphanilate (polyhexamethylene guanidine sulphanilate). Three types of films were selected: monolayer and three-layer films (both containing biocide) and market foil. The antibacterial activity of polyethylene film with PHMG sulphanilate was verified based on the guidelines of ISO 22196: 2007 (E): Plastics - Measurement of antibacterial activity on plastic surfaces. The antimicrobial efficacy of the monolayer film against Escherichia coli and Staphylococcus aureus was very good, equalling 6.25 log (100%) and 6.02 log (100%), respectively. It means that a total reduction in bacteria on the surface tested was achieved. The antimicrobial efficacy of the three-layer film against Escherichia coli was satisfactory and equaled 1.32 log (95.2%). The antimicrobial efficacy of this film against Staphylococcus aureus was very good and equaled 6.02 log (100%). The antifungal activity of polyethylene film with PHMG sulphanilate was verified based on the guidelines of ASTM G21 - 96: Standard practice for determining the resistance of synthetic polymeric materials to fungi. The fungal growth of Aspergillus niger, Chaetomium globosum and Trichoderma viride on the monolayer and three layer films was also inhibited, which means that the biocide in the films also exhibits antifungal activities. For the market foil, poor antibacterial efficacy against the bacteria and no antifungal activity against the fungi tested was observed.
PL
Celem badań było określenie właściwości przeciwdrobnoustrojowych wielowarstwowych folii zawierających pochodną PHMG (sulfanilan poliheksametylenoguanidyny). Do badań wybrano trzy rodzaje folii: jednowarstwową i trójwarstwową (obie zawierające sulfanilan PHMG) i folię rynkową. Skuteczność antybakteryjna folii jednowarstwowej w odniesieniu do Escherichia coli i Staphylococcus aureus była bardzo dobra i wynosiła odpowiednio: 6,25 log (100%) oraz 6,02 log (100%), co oznacza całkowitą redukcję naniesionych komórek bakterii na badanej powierzchni. Skuteczność antybakteryjna folii trójwarstwowej w odniesieniu do Escherichia coli i Staphylococcus aureus była również dobra i wynosiła odpowiednio: 1,32 log (95,2%) oraz 6,02 log (100%). Ponadto, w badaniach zaobserwowano zahamowanie wzrostu pleśni: Aspergillus niger, Chaetomium globosum i Trichoderma viride zarówno na jednowarstwowej, jak i trójwarstwowej folii. Stwierdzono, że zawarty w foliach biocyd wykazywał również właściwości przeciwgrzybicze. Przeprowadzone badania potwierdziły, że zastosowanie pochodnej PHMG do produkcji folii zapewnia skuteczną ochronę przed wzrostem niepożądanych mikroorganizmów na badanych foliach.
Rocznik
Strony
73--78
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Institute of Leather Industry, ul. Zgierska 73, 91-462 Łódź, Poland
autor
  • Institute of Leather Industry, ul. Zgierska 73, 91-462 Łódź, Poland
  • Institute of Leather Industry, ul. Zgierska 73, 91-462 Łódź, Poland
  • Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, ul. Wólczańska 171/173, 90-924 Łódź, Poland
Bibliografia
  • 1. Gibas E. Polyethylene films - raw materials and necessary additives. Plas Proc (in Polish) 2014; 3: 224-232.
  • 2. Richert A. Bacteriostatic properties of polyethylene composites. Chem Ind (in Polish) 2017; 96 (7): 1528-1530.
  • 3. Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK. Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol 2000; 60: 241–249.
  • 4. Walczak M, Richert A, Burkowska‑But A. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes. J Ind Microbiol Biotechnol 2014; 41:1719–1724.
  • 5. Ramamurthy P, Chellamani KP, Dhurai B, Rajan SPT, Subramanian B, Santhini E. Antimicrobial characteristics of pulsed laser deposited metal oxides on polypropylene hydroentangled nonwovens for medical textiles. FIBRES & TEXTILES in Eastern Europe 2017; 25, 2(122): 112119. DOI: 10.5604/12303666.1228192
  • 6. Tawiah B, Badoe W, Fu S. Advances in the Development of Antimicrobial Agents for Textiles: The Quest for Natural Products. Review. FIBRES & TEXTILES in Eastern Europe 2016; 24, 3(117): 136-149. DOI: 10.5604/12303666.1196624
  • 7. Lucas AD. Environmental fate of polyhexamethylene biguanide. Bull Environ Contam Toxicol 2012; 88: 322–325.
  • 8. Pinto F, Maillard JY, Denyer SP, McGeechan PM. Polyhexamethylene biguanide exposure leads to viral aggregation. J Appl Microbiol 2010; 108: 1880–1888.
  • 9. Curd FHS, Hendry H, Kenny TS, Murray AG, Rose FL. Synthetic antimalarials. Part XXVIII. An alternative route to N1-aryl-N5-alkyldiguanides. J Chem Soc 1948; 16301636.
  • 10. Lysytsya AV. Research on the impact of polyhexamethyleneguanidine on the plant component of biocenoses. Biosyst Divers 2017; 25 (2): 89-95.
  • 11. Byrde RJ, Clifford DR, Woodcock D. Fungicidal activity and chemical constitution XI*. The activity of n-alkyl guanidine acetates. Ann Appl Biol 1962; 50 (2): 189–377.
  • 12. Broxton P, Woodcock PM, Heatley F, Gilbert P. Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J Appl Bacteriol 1984; 57: 115–124.
  • 13. Allen MJ, White GF, Morby AP. The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology 2006; 152: 989–1000.
  • 14. Brzezinska MS, Walczak M, Jankiewicz U, Pejchalová M. Antimicrobial activity of polyhexamethylene guanidine derivatives introduced into polycaprolactone. J Polym Environ 2017; https://doi.org/10.1007/s10924-017-0974-9
  • 15. Lysytsya A, Lyco S, Portuhaj O. The polyhexamethyleneguanidine stimulation of seeds growing and cell proliferation. Mater Sci Eng B 2013; 3 (10): 653-660.
  • 16. Kratzer C, Tobudic S, Graninger W, Buxbaum A, Georgopoulos A. In vitro antimicrobial activity of the novel polymeric guanidine Akacid plus. J Hosp Infect 2006; 63: 316–322.
  • 17. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Kawachi M, Eslamifar A, Schmidt OJ, Schmidt A, Allameh A, Yoshinari T. Ultrastructural evidences of growth inhibitory effects of a novel biocide. Akacid-plus on an aflatoxigenic Aspergillus parasiticus. Toxicon 2006; 48: 1075–1082.
  • 18. Feng L, Wu F, Li J, Jiang Y, Duan X. Antifungal activities of polyhexamethylene biguanide and polyhexamethylene guanide against the citrus sour rot pathogen Geotrichum citri-aurantii in vitro and in vivo. Postharvest Biol Technol 2011; 61: 160–164.
  • 19. Mathurin YK, Koffi-Nevry R, Guéhi ST, Tano K, Oule´ MK. Antimicrobial activities of polyhexamethylene guanidine hydrochloride–based disinfectant against fungi isolated from cocoa beans and reference strains of bacteria. J Food Prot 2012; 75 (6): 1167–1171.
  • 20. Zhang Y, Jiang J, Chen Y. Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer 1999; 40: 6189–6198.
  • 21. PL225392 B1- Process for the production of an aminobenzenesulfonic derivative of polyhexamethylene guanidine (in Polish).
  • 22. ISO 22196: 2007 (E): Plastics - Measurement of antibacterial activity on plastics surfaces.
  • 23. ASTM G21 - 96: Standard practice for determining resistance of synthetic polymeric materials to fungi. West Conshohocken, PA: American Society for Testing and Materials (ASTM);1996.
  • 24. Zhou Z, Wei D, Guan Y, Zheng A, Zhong J-J. Extensive in vitro activity of guanidine hydrochloride polymer analogs against antibiotics-resistant clinically isolated strains. Mater Sci Eng C 2011; 31: 1836–1843.
  • 25. Lewis K, Klibanov AM. Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 2005; 23 (7): 343-348.
  • 26. Rogalsky S, Bardeau J-F, Tarasyuk O, Fatyeyeva K. Fabrication of new antifungal polyamide-12 material. Polym Int 2012; 61 (5): 686–691.
  • 27. Kondratyuk TO, Bardeau J-F, Sobko VM, Tarasyuk OP, Makhno SM, Sheludko EV, Kyselov YuV, Rogalsky SP. Antifungal activity of polyamide 12 films modified with polyhexamethylene guanidine dodecylbenzenesulfonate. Poster session presented at: Modern Problems of Surface Chemistry, International Conference; 2014 May 19-23; Kyiv, Ukraine.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a808820-74f7-44fd-903e-919b158b3425
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.