Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Global Navigation Satellite System (GNSS) can be used to determine accurate and high-frequency atmospheric parameters, such as Zenith Total Delay (ZTD) or Precipitable Water Vapour (PW), in all-weather conditions. These parameters are often assimilated into Numerical Weather Prediction (NWP) models and used for nowcasting services and climate studies. The effective usage of the ZTDs obtained from a ground-based GNSS receiver’s network in a NWP could fill the gap of insufficient atmospheric water vapour state information. The supply of such information with a latency acceptable for NWP assimilation schemes requires special measures in the GNSS data processing, quality control and distribution. This study is a detailed description of the joint effort of three institutions – Wrocław University of Environmental and Life Sciences, Wrocław University, and the Institute of Meteorology and Water Management – to provide accurate and timely GNSS-based meteorological information. This paper presents accuracy analyses of near real-time GNSS ZTD validated against reference ZTD data: the International GNSS Service (IGS) from a precise GNSS solution, Weather Research and Forecasting (WRF) model, and radiosonde profiles. Data quality statistics were performed for five GNSS stations in Poland over a time span of almost a year (2015). The comparison of near real-time ZTD and IGS shows a mean ZTD station bias of less than 3 mm with a related standard deviation of less than 10 mm. The bias between near real-time ZTD and WRF ZTD is in the range of 5-11 mm and the overall standard deviation is slightly higher than 10 mm. Finally, the comparison of the investigated ZTD against radiosonde showed an average bias at a level of 10 mm, whereas the standard deviation does not exceed 14 mm. Considering the data quality, we assess that the NRT ZTD can be assimilated into NWP models.
Słowa kluczowe
Rocznik
Tom
Strony
3--13
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
- University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Grunwaldzka 53, 50-357 Wrocław, Poland
autor
- University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Grunwaldzka 53, 50-357 Wrocław, Poland
autor
- University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Grunwaldzka 53, 50-357 Wrocław, Poland
autor
- University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Grunwaldzka 53, 50-357 Wrocław, Poland
autor
- University of Science and Technology, Department of Computer Engineering, Faculty of Electronics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- University of Wrocław, Department of Climatology and Atmosphere Protection, Poland
autor
- Institute of Meteorology and Water Management – National Research Institute, Parkowa 30, 51-616 Wrocław, Poland
autor
- Institute of Meteorology and Water Management – National Research Institute, Parkowa 30, 51-616 Wrocław, Poland
autor
- Institute of Meteorology and Water Management – National Research Institute, Parkowa 30, 51-616 Wrocław, Poland
Bibliografia
- 1. Ahmed F., Teferle N., Bingley R., 2012, An evaluation of realtime, near real-time and post-processed Zenith Total Delay estimates, IGS Workshop, July 23-27, Olsztyn, Poland
- 2. Barker D., Huang X.Y., Liu Z., Auligné T., Zhang X., Rugg S., Ajjaji R., Bourgeois A., Bray J., Chen Y., Demirtas M., Guo Y.R., Henderson T., Huang W., Lin H.Ch., Michalakes J., Rizvi S., Zhang X., 2012, The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA, Bulletin of the American Meteorological Society, 93 (6), 831-843, DOI: 10.1175/ BAMS-D-11-00167.1
- 3. Bekaert D.P.S., Hooper A., Wright T.J., 2015, A spatially variable power law tropospheric correction technique for InSAR data, Journal of Geophysical Research: Solid Earth, 120 (2), 13451356, DOI: 10.1002/2014JB011557
- 4. Bennitt G.V., Jupp A., 2012, Operational assimilation of GPS Zenith Total Delay observations into the Met Office numerical weather prediction models, Monthly Weather Review, 140 (8), 2706-2719, DOI: 10.1175/MWR-D-11-00156.1
- 5. Boehm J., Niell A., Tregoning P., Schuh H., 2006, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophysical Research Letters, 33 (7), L07304, DOI: 10.1029/2005GL025546
- 6. Bosy J., Graszka W., Leończyk M., 2007, ASG-EUPOS. A multifunctional precise satellite positioning system in Poland, European Journal of Navigation, 5 (4), 2-6
- 7. Bosy J., Kapłon J., Rohm W., Sierny J., Hadaś T., 2012, Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data, Annales Geophysicae, 30, 1379-1391, DOI: 10.5194/angeo-30-1379-2012
- 8. Byram S, Hackman C., 2012, Computation of the IGS Final Troposphere product by the USNO, IGS Workshop, July 23-27, Olsztyn, Poland
- 9. Dach R., Hugentobler U., Fridez P., Meindl M., 2007, Bernese GPS Software, Astronomical Institute, University of Bern, 640 pp.
- 10. Dach R., Lutz S., Walser P., Fridez P., 2015, Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, University of Bern, Bern Open Publishing, 884 pp., DOI: 10.7892/boris.72297
- 11. Dow J.M., Neilan R.E., Rizos C., 2009, The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, Journal of Geodesy, 83 (3-4), 191-198, DOI: 10.1007/s00190-008-0300-3
- 12. E-GVAP, 2010, EIG EUMETNET GNSS Water Vapour Programme (E-GVAP-II). Product Requirements Document. Technical Report, Met Office, 36 pp., available at: http:// egvap.dmi.dk/support/formats/egvap_prd_v10.pdf (data access 09.09.2016)
- 13. Hackman Ch., Guerova G., Byram S., Dousa J., Hugentobler U., 2015, International GNSS Service (IGS) Troposphere Products and Working Group Activities, conference material, FIG Working Week, 17-21 May Sofia, Bulgaria, 14 pp.
- 14. Hadaś T., Kaplon J., Bosy J., Sierny J., Wilgan K., 2013, Nearreal-time regional troposphere models for the GNSS precise point positioning technique, Measurement Science and Technology, 24 (5), 055003
- 15. Hitsch U., 2004, Comparison of GPS and Radiosonde Derived Humidity Values, M.S. thesis, Institute of Meteorology, University of Vienna.
- 16. Hofmann-Wellenhof B., Lichtenegger H., Wasle E., 2008, GNSS – global navigation satellite systems: GPS, GLONASS, Galileo, and more, Springer-Verlag Wien, 518 pp.
- 17. Hoque M.M., Jakowski N., 2007, Higher order ionospheric effects in precise GNSS positioning, Journal of Geodesy, 81 (4), 259-268, DOI: 10.1007/s00190-006-0106-0
- 18. Hordyniec P., Bosy J., Rohm W., 2015, Assessment of errors in Precipitable Water data derived from Global Navigation Satellite System observations, Journal of Atmospheric and Solar-Terrestrial Physics, 129, 69-77, DOI: 10.1016/j. jastp.2015.04.012
- 19. Isioye O.A., Combrinck L., Botai J.O., Munghemezulu C., 2015, The potential for observing African weather with GNSS remote sensing, Advances in Meteorology, 2015, 16 pp., DOI: 10.1155/2015/723071
- 20. Karabatić A., Weber R., Haiden T., 2011, Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather nowcasting in Austria, Advances in Space Research, 47 (10), 1691-1703, DOI: 10.1016/j.asr.2010.10.028
- 21. Kleijer F., 2004, Troposphere modelling and filtering for precise GPS levelling, Ph. D. thesis, Mathematical Geodesy and Positioning, Delft University of Technology, 282 pp.
- 22. Landau H., Vollath U., Chen X., 2002, Virtual reference station systems, Journal of Global Positioning Systems, 1 (2), 137-143
- 23. Manning T., Rohm W., Zhang K., Hurter F., Wang C., 2014, Determining the 4D dynamics of wet refractivity using GPS tomography in the Australian region, [in:] Earth on the Edge: Science for a Sustainable Planet, Ch. Rizos, P. Willis (eds.), Springer Berlin Heidelberg, 41-49
- 24. Möller G., Böhm J., Weber R., 2014, Comparison of IGS final troposphere estimates with ray-traced delays, IGS Workshop, June 23-27, Pasadena, CA, USA
- 25. NCAR, 2016, The NCAR Command Language (Version 6.3.0). Boulder, Colorado: UCAR/NCAR/CISL/TDD, DOI: 10.5065/D6WD3XH5
- 26. Niell A.E., 2000, Improved atmospheric mapping functions for VLBI and GPS, Earth Planets Space, 52 (10), 699-702, DOI: 10.1186/BF03352267
- 27. Norman R.J., Le Marshall J., Rohm W., Carter B.A., Kirchengast G., Alexander S., Liu C., Zhang K., 2015, Simulating the impact of refractive transverse gradients resulting from a severe troposphere weather event on GPS signal propagation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (1), 418-424, DOI: 10.1109/ JSTARS.2014.2344091
- 28. Oberkampf W.L., DeLand S.M., Rutherford B.M., Diegert K.V., Alvin K.F., 2002, Error and uncertainty in modeling and simulation, Reliability Engineering & System Safety, 75 (3), 333-357, DOI: 10.1016/S0951-8320(01)00120-X
- 29. Pacione R., Vespe F., 2008, Comparative studies for the assessment of the quality of near-real-time GPS-derived atmospheric parameters, Journal of Atmospheric and Oceanic Technology, 25, 701-714, DOI: 10.1175/2007JTECHA935.1
- 30. Poli P., Moll P., Rabier F., Desroziers G., Chapnik B., Berre L., Healy S.B., Andersson E., El Guelai F.Z., 2007, Forecast impact studies of zenith total delay data from European near real-time GPS stations in Météo France 4DVAR, Journal of Geophysical Research: Atmospheres, 112 (D6), DOI: 10.1029/2006JD007430
- 31. Rennie M., 2012, Report on the Assimilation of GPS Radio Occultation data into the Met Office global model, Forecasting Research Technical Report No. 510, 63 pp.
- 32. Rohm W., Yuan Y., Biadeglgne B., Zhang K., Le Marshall J., 2014, Ground-based GNSS ZTD/IWV estimation system for numerical weather prediction in challenging weather conditions, Atmospheric Research, 138, 414-426, DOI: 10.1016/j. atmosres.2013.11.026
- 33. Saastamoinen J., 1972, Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, [in:] The use of the Artificial Satellites for Geodesy, S.W. Henriksen, A. Mancini, B.H. Chovitz (eds.), American Geophysical Union, Washington, USA, 247-251, DOI: 10.1029/ GM015p0247
- 34. Schraff C., Hess R., 2012, A description of the nonhydrostatic COSMO-Model. Part III: Data Assimilation, Deutscher Wetterdienst, Offenbach, 93 pp.
- 35. Solheim F., Vivekanandan J., Ware R., Rocken C., 1999, Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particules, Journal of Geophysical Research, 104 (D8), 9663-9670
- 36. Van der Marel H., 2004, COST-716 demonstration project for the near real-time estimation of integrated water vapour from GPS, Physics and Chemistry of the Earth. Parts A/B/C, 29 (2-3), 187-199, DOI: 10.1016/j.pce.2004.01.001
- 37. Vedel H., Mogensen K.S., Huang X.Y., 2001, Calculation of zenith delays from meteorological data, comparison of NWP model, radiosonde and GPS delays, Physics and Chemistry of the Earth, 26 (6-8), 497-502, DOI: 10.1016/S14641895(01)00091-6
- 38. Vespe F., Pacione R., Pace B., 2008, Accuracy of regional nearreal time GPS ZTD & site coordinate estimates versus IGS Ultra-Rapid products, IGS Workshop, Miami Beach, Florida, USA
- 39. Vey S., Dietrich R., Rülke A., Fritsche M., Steigenberger P., Rothacher M., 2010, Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade, Journal of Climate, 23, 16751695, DOI: 10.1175/2009JCLI2787.1
- 40. WMO, 2012, WMO Integrated Global Observing System. Final report of the Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, WMO Technical Repoirt 2012-1, 25 pp., available at: www.wmo. int/pages/prog/www/OSY/Meetings/NWP5_Sedona2012/ Final_Report.pdf (data access 09.09.2016)
- 41. Zheng L., Sun J., Zhang X., Liu C., 2013, Organizational modes of mesoscale convective systems over central East China, Weather and Forecasting, 28 (5), 1081-1098, DOI: 10.1175/ WAF-D-12-00088.1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a7a0dbd-ba4b-4f23-8b41-0fdd3122e122