PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stress relaxation of porcine tendon under simulated biological environment: experiment and modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study was to investigate the viscoelastic response in the low and high physiological strain with the use of experimental and modeling approach. Methods: Viscoelastic response in the low, transition and high physiologic strain (3, 6 and 9%) with consideration of simulated biological environment (0.9% saline solution, 37 °C) was measured in relaxation tests. Preconditioning of tendons was considered in the testing protocol and the applied range of load was obtained from tensile testing. The quasi-linear viscoelasticity theory was used to fit experimental data to obtain constants (moduli and times of relaxation), which can be used for description of the viscoelastic behavior of tendons. The exponential non-linear elastic representation of the stress response in ramp strain was also estimated. Results: Differences between stress relaxation process can be seen between tendons stretched to the physiological strain range (3%) and exceeding this range (6 and 9%). The strains of 6% and 9% showed a similar stress relaxation trend displaying relatively rapid relaxation for the first 70 seconds, whereas the lowest strain of 3% displayed relatively slow relaxation. Conclusions: Results of the model fitting showed that the quasi-linear viscoelastic model gives the best fit in the range of low physiological strain level.
Rocznik
Strony
59--68
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics and Biomechanics, Kraków, Poland
  • Cracow University of Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics and Biomechanics, Kraków, Poland
Bibliografia
  • [1] ABRAMOWITCH S.D., WOO S.L.Y., CLINEFF T.D., DEBSKI R.E., An evaluation of the quasi-linear viscoelastic properties of the healing medial collateral ligament in a goat model, Annals of Biomedical Engineering, 2004, 32, 329–335.
  • [2] BONIFASI-LISTA C., LAKEZ S.P., SMALL M.S., WEISS J.A., Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading, Journal of Orthopaedic Research, 2005, 23, 67–76.
  • [3] CARNIEL T.A., FANCELLO E.A., A transversely isotropic coupled hyperelastic model for the mechanical behavior of tendons, Journal of Biomechanics, 2017, 54, 49–57.
  • [4] CIARLETTA P., MICERA S., ACCOTO D., DARIO P., A novel microstructural approach in tendon viscoelastic modelling at the fibrillar level, Journal of Biomechanics, 2006, 39, 2034–2042.
  • [5] DAVIS F.M., DE VITA R., A nonlinear constitutive model for stress relaxation in ligaments and tendons, Annals of Biomedical Engineering, 2012, 40, 2541–2550.
  • [6] DEFRATE L.E., LI G., The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model, Biomechanics and Modeling in Mechanobiology, 2007, 6, 245–251.
  • [7] DUENWALD S.E., VANDERBY Jr R., LAKES R.S., Constitutive equations for ligament and other soft tissue: evaluation by experiment, Acta Mechanica, 2009, 205, 23–33.
  • [8] DUENWALD S.E., VANDERBY Jr R., LAKES R.S., Stress relaxation and recovery in tendon and ligament: Experiment and modeling, Biorheology, 2010, 47, 1–14.
  • [9] DUENWALD S.E., VANDERBY R., LAKES R.S., Viscoelastic relaxation and recovery of tendon, Annals of Biomedical Engineering, 2009, 37, 1131–1140.
  • [10] ELLIOTT D.M., ROBINSON P.S., GIMBEL J.A., SARVER J.J., ABBOUD J.A., IOZZO R.V., SOSLOWSKY L.J., Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons, Annals of Biomedical Engineering, 2003, 31, 599–605.
  • [11] FANG F., LAKE S.P., Modelling approaches for evaluating multiscale tendon mechanics, Interface Focus, 2016, 6, 20150044.
  • [12] FUNG Y.C., The Meaning of the constitutive equation, [in:] Biomechanics: mechanical properties of living tissues, Springer--Verlag, New York 1993, 23–65.
  • [13] FUNK J., HALL G.W., CRANDALL J., PILKEY W.D., Linear and quasi-linear viscoelastic characterization of ankle ligaments, Journal of Biomechanical Engineering, 2000, 122, 15–22.
  • [14] JOHNSON G.A., TRAMAGLINI D.M., LEVINE R.E., OHNO K., CHOI N.Y., WOO S.L., Tensile and viscoelastic properties of human patellar tendon, Journal of Orthopaedic Research, 1994, 12, 796–803.
  • [15] KHAYYERI H., GUSTAFSSON A., HEUIJERJANS A., MATIKAINEN M.K., JULKUNEN P., ELIASSON P., ASPENBERG P., ISAKSSON H., A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon, PLoS ONE, 2015, 10 (6), e0126869.
  • [16] LIBER-KNEĆ A., ŁAGAN S., Experimental and Constitutive Approaches for a Study of Mechanical Properties of Animal Tendons, Advances in Intelligent Systems and Computing, 2020, 1033, 288–297.
  • [17] MAGANARIS C.N., NARICI M.V., Mechanical properties of tendons, Tendon injuries, Springer, USA, 2005, 14–21.
  • [18] OFTADEH R., CONNIZZO B.K., NIA H.T., ORTIZ C., GRODZINSKY A.J., Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics, Acta Biomaterialia, 2018, 70, 249–259.
  • [19] PROVENZANO P.P., LAKES R.S., CORR, D.T., VANDERBY Jr R., Application of nonlinear viscoelastic models to describe ligament behavior, Journal of Biomechanical Engineering, 2002, 1, 45–57.
  • [20] SHEARER T., A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure, Journal of Biomechanics, 2015, 48, 290–297.
  • [21] SHEPARD J.H., LEGERLOTZ K., DEMIRCI T., KLEMT C., RILEY G.P., SCREEN H.R.C., Functionally distinct tendon fascicles exhibit different creep and stress relaxation behavior, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 49–59.
  • [22] SOPAKAYANG R., A new viscoelastic model for preconditioning in ligaments and tendons, Proceedings of the World Congress on Engineering, 2013, 3, 1717–1722.
  • [23] TERAMOTO A., LUO Z.P., Temporary tendon strengthening by preconditioning, Clinical Biomechanics, 2008, 23, 619–622.
  • [24] WALDEN G., LIAO X., DONELL S., RAXWORTHY M.J., RILEY G.P., SAEED A., A clinical, biological, and biomaterials perspective into tendon injuries and regeneration, Tissue Engineering Part B Reviews, 2017, 23, 44–58.
  • [25] WREN T.A.L., YERBY S.A., BEAUPRÉ G.S., CARTER D.R., Influence of bone mineral density, age and strain rate on the failure mode of human Achilles tendons, Clinical Biomechanics, 2001, 16, 529–534.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a75e115-5612-4b9b-a788-f6bfa619701f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.