Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper reports the experimental results of an investigation of the effect of forging temperature on the microstructure and hardness of Grade 5 titanium ELI. A growing interest in the use of titanium alloys in implantology results from their unique properties. Grade 5 titanium ELI is widely used in medicine for producing a variety of implants and medical tools such as hip, knee and shoulder joints; bone plates; pacemaker casing and its components; screws; nails; dental materials and tools. In the first part of the paper the properties of Grade 5 titanium ELI are described and examples of medical applications of this alloy are given. In a subsequent section of the paper, forging tests performed on this biomaterial in a temperature range from 750°C to 1100°C are described. Following the forging process, the results of the titanium alloy’s microstructure and hardness are reported. The experimental results are used to determine the most suitable forging temperature range for Grade 5 titanium ELI with respect to its microstructure.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
147--158
Opis fizyczny
Bibliogr. 25 poz., fig., tab
Twórcy
autor
- Lublin University of Technology, Mechanical Engineering Faculty, Department of Computer Modelling and Metal Forming Technologies, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Mechanical Engineering Faculty, Department of Computer Modelling and Metal Forming Technologies, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1.Adamus J. Analysis of forming of titan products by cold forming methods., (in Polish: Analiza kształtowania wyrobów tytanowych metodami obróbki plastycznej na zimno. Series of monographs, 174, Czestochowa University of Technology, Częstochowa, 2010.
- 2.Bienias J., Mania R., Jakubczak P. and Majerski K. The issues of manufacturing geometrically complicated elements using FML laminates. Composites theory and practice, 4(15), 2015, 243–249.
- 3.Brunette D.M., Tengvall P., Textor M. and Thomsen P. Titanium in medicine. Springer, Germany, 2001.
- 4.Ding R., Guo Z.X. and Wilson A. Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing. Materials Science and Engineering A, 327, 2002, 233–245.
- 5.Donachie M.J. Titanium: A Technical Guide, 2nd Edition. ASM International, USA, 2000.
- 6.Dziubińska A., Gontarz A., Dziubiński M. and Barszcz M. The forming of magnesium alloy forgings for aircraft and automotive applications. Advances in Science and Technology Research Journal, 31 (10), 2016, 158–168.
- 7.Dziubinska A. and Gontarz A. Limiting phenomena in a new forming process for two-rib plates. Metalurgija, 3(54), 2015, 555–558.
- 8.Dziubinska A. and Gontarz A. A new method for producing magnesium alloy twin-rib aircraft brackets. Aircraft Engineering and Aerospace Technology, 2(87), 2015, 180–188.
- 9.Fujibayashi S., Neo M., Kim H.M., Kokubo T. and Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials, 25, 2004, 443–450.
- 10.Gontarz A., Winiarski G. Numerical and experimental study of producing flanges on hollow parts by extrusion with a movable sleeve. Archives of Metallurgy and Materials, 3(60), 2015, 1917–1921.
- 11.Gupta R.K., Kumar A. V., Kumar P. R. Effect of Variants of Thermomechanical Working and Annealing Treatment on Titanium Alloy Ti6Al4V Closed Die Forgings. Journal of Materials Engineering and Performance, 25 (6), 2016, DOI: 10.1007/s11665–016–2110–8.
- 12.Hermawan H., Ramdan D. and Djuansjah J. R. P. Metals for Biomedical Applications. Biomedical Engineering – From Theory to Applications. Edited by Prof. Reza Fazel, Publisher InTech, 2011, 411–430.
- 13.Hirano T., Murakami T., Taira M., Narushima T. and Ouchi C. Alloy design and properties of new a + b titanium alloy with excellent cold workability, superplasticity and cytocompatibility. ISIJ International, 47, 2007, 745–752.
- 14.Lampman S. Wrought Titanium and Titanium Alloys. ASM Handbook, Properties and Selection: Nonferrous Alloys and Special – Purpose Materials, ASM International, USA, 1992.
- 15.Niinomi M., Nakai M., and Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8, 2012, 3888–3903.
- 16.Narushima T. Titanium and its alloys as biomaterials. Journal of Japan Institute of Light Metals, 2005, 55, 561–565.
- 17.Rojas-Olmos D. C., López-Perrusquia N., Doñu-Ruiz M. A., Torres San Miguel C. R. Study Microstructure and Mechanical Properties of Prosthesis of Forging. MRS Online Proceeding Library Archive 1766, 2015, DOI: 10.1557/opl.2015.406.
- 18.Saitova L.R., Höppel H.W., Göken M., Semenova I.P., Raab G.I. and Valiev R.Z. Fatigue behavior of ultrafine-grained Ti–6Al–4V “ELI” alloy for medical applications. Materials Science and Engineering: A, 503, 2009, 145–147.
- 19.Sińczak J. Advanced forging technologies high-melting materials (in Polish: Zaawansowane technologie kucia materiałów wysokotopliwych). ARBOR FP Kraków, Kraków, 2013.
- 20.Swic A., Draczew A. and Gola A. Method of achieving accuracy of thermo-mechanical treatment of low-rigidity shafts. Advances in Science and Technology Research Journal, 29(10), 2016, 62–70.
- 21.Szala M. and Kot E. Influence of repainting on the mechanical properties, surface topography and microstructure of polyester powder coatings. Advances in Science and Technology Research Journal, 2(11), 2017, 159–165.
- 22.Tofil A., Tomczak J., Bulzak T. Comparative Analysis of Forging Rolling and Cross-Wedge Rolling of Forgings from Titanium Alloy Ti6Al4V. Key Engineering Materials, 687, 2016, 141–148.
- 23.Wang K. The use of titanium for medical applications in the USA. Materials Science and Engineering A, 213, 1996, 134–137.
- 24.Wojcik Ł., Lis K. and Pater Z. Plastometric tests for plasticine as physical modelling material. Open Engineering, 1(6), 2016, 653–659.
- 25.Wolszczak P. and Cechowicz R. Examination of the influence of shear micro geometrical properties on transverse elasticity the modulus of roving composite materials used in critical constructions. 32nd Riso International Symposium on Materials Science – Composite materials for structural performance: towards higher limits, Denmark, 2011, 487–496.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a741b11-3c12-4e07-bbc8-9fa082002b1c