PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Exoskeleton robots generally have multi-functions and one such function is doing rehabilitation therapy in upper limb and lower limb in stroke-affected patients. A novel hybrid (serial-parallel) robot manipulator was proposed in this paper for rehabilitation of upper limb and its kinematics are studied systematically. This robot manipulator intends to perform wrist flexion, wrist extension, wrist radial deviation, wrist ulnar deviation, elbow flexion, elbow extension, elbow pronation and elbow supination motions. The contemporary mechanical designs especially the kinematic structure of upper limb exoskeleton robots have a unique feature that is, almost all of them use serial manipulators, and few others used parallel manipulators. The kinematic structure of the proposed robot is that of a hybrid manipulator (two parallel manipulators connected in series) which has 4-degrees-of-freedom. It is composed of an upper 3SPS-type parallel manipulator and 2SPR-type parallel manipulator connected in series. Methods: The Jacobian and Hessian Matrix method was used to derive the manipulator kinematic formula for solving the displacement, velocity and acceleration. Results: A 3D model of the robotic arm was constructed and analyzed by simulation. The positioning workspace of manipulator was constructed and analyzed. Conclusions: The 3SPS-type parallel manipulator has good kinematic characteristics while performing wrist motions. The 2SPR-type parallel manipulator produced singular configuration, while performing the desired rehabilitation elbow motions, it was found to not be suitable for usage in performing rehabilitation therapy in stroke-affected patients.
Rocznik
Strony
175--189
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore Tamil Nadu 641014, India
  • Department of Civil Engineering, Rathinam Technical Campus, Coimbatore, Tamil Nadu 641021, India
Bibliografia
  • [1] BYL N.N., ABRAMS G.M., PITSCH E., FEDULOW I., KIM H., SIMKINS M., Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL- EXO7) and actual task-specific repetitive training guided by a physical therapist, Hand Ther., 2013, 26, 343–352.
  • [2] GOSSELIN C., Determination of the Workspace of 6-DOF Parallel Manipulators, J. Mech. Des., 1990, 112 (3), 331–336.
  • [3] GUPTA A., O’MALLEY M.K., Design of a Haptic Arm Exoskeleton for Training and Rehabilitation, IEEE ASME Trans. Mechatron., 2006, 11 (3), 280–289.
  • [4] GUPTA A., O’MALLEY M.K., PATOGLU V., Design, Control and Performance of Rice Wrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training, Int. J. Rob. Re., 2008, 27 (2), 233–251.
  • [5] JIANG X., CHEN H., SUN D., BAKER J.S., GU Y., Running speed does not influence the asymmetry of kinematic variables of the lower limb joints in novice runners, Acta Bioeng. Biomech., 2021, 23 (1), 69–81.
  • [6] KABAŁA T., SAWKO L., DZIUBA-SŁONINA A., GIEMZA C., Influence of modern technologies used in rehabilitation on selected functional parameters of the spine of patients with low back pain, Acta Bioeng. Biomech., 2020, 22 (4), 101–107.
  • [7] KOWAL M., KOŁCZ A., DYMAREK R., PAPROCKA-BOROWICZ M., GNUS J., Muscle torque production and kinematic properties in post-stroke patients: a pilot cross-sectional study, Acta Bioeng. Biomech., 2020, 22 (1), 11–20.
  • [8] LOUREIRO R.C.V., HARWIN W.S., LAMPERD R., COLLIN C., Evaluation of reach and grasp robot-assisted therapy suggests similar functional recovery patterns on proximal and distal arm segments in sub-acute Hemiplegia, IEEE Trans. Neural. Syst. Rehabilitation Eng., 2014, 22 (3), 593–602.
  • [9] LU Y., DAI Z., YE N., WANG P., Kinematics/statics analysis of a novel serial-parallel robotic arm with hand, J. Mech. Sci. Technol., 2015, 29 (10), 4407–4416.
  • [10] LUKANIN V., Inverse kinematics, forward kinematics and working space determination of 3-dof parallel manipulator with S-P-R joint structure, Periodica Polytechnica Ser. Mech. Eng., 2005, 49 (1), 39–61.
  • [11] MARTINEZ J.A., NG P., LU S., CAMPAGNA M.S., CELIK O., Design of Wrist Gimbal. A forearm and wrist exoskeleton for stroke rehabilitation, 2013 IEEE International Conference on Rehabilitation Robotics, Seattle, Washington USA, (June 24–26, 2013).
  • [12] MILOT M.H., SPENCER S.J., CHAN V., ALLINGTON J.P., KLEIN J., CHOU C., BOBROW J.E., CRAMER S.C, REINKENSMEYER D.J., A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training chronic stroke survivors using the arm exoskeleton bones, J. Neuroeng. Rehabil., 2013, 10 (112), 1–12.
  • [13] NEF T., MIHELJ M., COLOMBO G., RIENER R., ARMin – Robot for rehabilitation of the upper extremities, Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, (May 15–19, 2006), 3152–3157.
  • [14] OTAKA E., OTAK Y., KASUGA S., NISHIMOTO A., YAMAZAKI K., KAWAKAMI M., USHIBA J., LIU M., Clinical usefulness and validity of robotic measures of reaching movements in hemiparetic stroke patients, J. Neuroeng. Rehabil., 2015, 12, 1–10.
  • [15] PALERMO E., HAYES D.R., RUSSO E.F., CALABRÒ R.S., PACILLI A., FILONI S., Translational effects of robot-mediated therapy in subacute stroke patients: an experimental evaluation of upper limb motor recovery, Peer J., 2018, 6, 1–25.
  • [16] PERRY J.C., ROSEN J., BURNS S., Upper-limb powered exoskeleton design, IEEE/ASME Trans. Mechatron., 2007, 12, 408–417.
  • [17] PINEDA-RICO Z., SANCHEZ DE LUCIO J.A., LOPEZ F.J.M., CRUZ P., Design of an exoskeleton for upper limb robot– assisted rehabilitation based on co-simulation, J. Vibroengineering, 2016, 18 (5), 3269–3278.
  • [18] PONS J.L., Wearable robots: Biomechatronic Exoskeletons, John Wiley & Sons, Ltd., 2008.
  • [19] RAHMAN M.H., RAHMAN M.J., CRISTOBAL O.L., SAAD M., KENNÉ J.P., ARCHAMBAULT P.S., Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements, Robotica, 2015, 33 (1), 19–39.
  • [20] TSAI L.W., Robot Analysis: The Mechanics of Serial and Parallel Manipulator, John Wiley & Sons, 1999.
  • [21] VAIDA C., PLITEA N., CARBONE G., BIRLESCU I., ULINICI I., PISLA A., PISLA D., Innovative development of a spherical parallel robot for upper limb rehabilitation, Int. J. Mech. Robot. Syst., 2018, 4 (4), 256–276.
  • [22] TAPPEINER L., OTTAVIANO E., HUSTY M.L., A Cable-Driven Robot for Upper Limb Rehabilitation Inspired by the Mirror Therapy, Springer-Mechanisms and Machine Science Book Series, 2017, 174–181.
  • [23] ALAMDARI A., KROVI V., Parallel articulated-cable exercise robot (pacer): novel home-based cable-driven parallel platform robot for upper limb neuro-rehabilitation, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA, (August 2–5, 2015), 1–10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a6e74ab-76b7-4c0e-8fb5-ce04ecde1a0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.