PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of harmonic voltage coupling on torque ripple of permanent magnet synchronous motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The permanent magnet synchronous motor (PMSM) driven by an inverter is widely used in the industrial field, but the inverter has a significant impact on the operational stability of the PMSM. The torque ripple of the PMSM is directly affected by the coupling of multiple harmonic voltages in the motor windings. In order to analyze its influence, a water-cooled PMSM with 20 kW 2000 r/min is taken as an example to establish the finite element model of the prototype, and the correctness of the model is verified by experiments. Firstly, based on the finite element method, the electromagnetic field of the PMSM is numerically solved in different operating states, and the performance parameters of the PMSM are obtained. Based on these parameters, the influence of the harmonic voltage amplitude on the torque ripple is studied, and the influence law is obtained. Secondly, combined with the decoupling analysis method, the influence of harmonic voltage coupling on the torque ripple is compared and analyzed, and the variation law of harmonic voltage coupling on the torque ripple is obtained. In addition, the influence of different harmonic voltage coupling on the average torque of the PMSM is studied, and the influence degree of different harmonic voltage amplitude on the torque fluctuation is determined. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.
Słowa kluczowe
Rocznik
Strony
399--410
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
  • Zhengzhou University of Light Industry, China
autor
  • Zhengzhou University of Light Industry, China
autor
  • Zhengzhou University of Light Industry, China
  • Zhengzhou University of Light Industry, China
autor
  • Zhengzhou University of Light Industry, China
Bibliografia
  • [1] Zhu G., Zhu Y., Tong W., Han X., Zhu J., Double-Circulatory Thermal Analyses of a Water-Cooled Permanent Magnet Motor Based on a Modified Model, IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1–4 (2018).
  • [2] Zhang B., Qu R.,Wang J., Xu W., Fan X., Chen Y., Thermal Model of Totally Enclosed Water-Cooled Permanent-Magnet Synchronous Machines for Electric Vehicle Application, IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3020–3029 (2015).
  • [3] Su Y. X., Zheng C. H., Duan B. Y., Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors, IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 814–823 (2005).
  • [4] Choi H. H., Vu N. T., Jung J., Digital Implementation of an Adaptive Speed Regulator for a PMSM, IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 3–8 (2011).
  • [5] Nowak L., Knypinski L., Jedryczka C., Kowalski K., Decomposition of the compromise objective function in the permanent magnet synchronous motor optimization, Compel – The International Journal For Computation And Mathematics In Electrical And Electronic Engineering, vol. 34, pp. 496–504 (2015).
  • [6] Hemeida A., Sergeant P., Vansompel H., Comparison of Methods for Permanent Magnet Eddy-Current Loss Computations with and without Reaction Field Considerations in Axial Flux PMSM, IEEE Transactions on Magnetics, vol. 51, no. 9, pp. 1–11 (2015).
  • [7] Piippo A., Luomi J., Torque Ripple Reduction in Sensorless PMSM Drives, IECON 2006 – 32nd Annual Conference on IEEE Industrial Electronics, Paris, pp. 920–925 (2006).
  • [8] Cvetkovski G., Petkovska L., Cogging torque minimisation of PM synchronous motor using genetic algorithm, International Journal of Applied Electromagnetics and Mechanics, vol. 46, pp. 327–334 (2014).
  • [9] Lai C., Feng G., Mukherjee K., Loukanov V., Kar N. C., Torque Ripple Modeling and Minimization for Interior PMSM Considering Magnetic Saturation, IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2417–2429 (2018).
  • [10] Oliveira A. A., Aguiar M.L. Jr, Sanagiotti E. R., Electromagnetic torque ripple and copper losses reduction in permanent magnet synchronous machines, European Transactions on Electrical Power, vol. 22, no. 5, pp. 627–644 (2012).
  • [11] Sivaprakasam A., Manigandan T., A simple method to reduce torque ripple and mechanical vibration in direct torque controlled permanent magnet synchronous motor, Journal of Vibroengineering, vol. 15, no. 2, pp. 658–674 (2013).
  • [12] Weili L., Xiaochen Z., Baoquan K., Loss calculation and thermal simulation analysis of high-speedPM synchronous generators with rotor topology, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, pp. V14-612-V14-616 (2010).
  • [13] Li W., Zhang X., Cheng S., Cao J., Thermal Optimization for a HSPMG Used for Distributed Generation Systems, IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 474–482 (2013).
  • [14] Kowalski K., Nowak L., Knypinski L., Idziak P., Influence of the core saturation on the dynamic performance of the magnetostrictive actuator, Archives Of Electrical Engineering, vol. 66, pp. 523–531 (2017).
  • [15] Yamazaki K., Abe A., Loss Investigation of Interior Permanent-Magnet Motors Considering Carrier Harmonics and Magnet Eddy Currents, IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 659–665 (2009).
  • [16] Chunting Mi, Filippa M.,Weiguo Liu, Ruiqing Ma, Analytical method for predicting the air-gap flux of interior-type permanent-magnet machines, IEEE Transactions on Magnetics, vol. 40, no. 1, pp. 50–58 (2004).
  • [17] Binns K.J., Jabbar M.A., High-field self-starting permanent-magnet synchronous motor, IEE Proceedings B – Electric Power Applications, vol. 128, no. 3, pp. 157–160 (1981).
  • [18] Ou L., Wang X., Xiong F., Ye C., Reduction of torque ripple in a wound-rotor brushless doubly-fed machine by using the tooth notching, IET Electric Power Applications, vol. 12, no. 5, pp. 635–642 (2018).
  • [19] Kermanipour M. J., Ganji B., Modification in Geometric Structure of Double-Sided Axial Flux Switched Reluctance Motor for Mitigating Torque Ripple, Canadian Journal of Electrical and Computer Engineering, vol. 38, no. 4, pp. 318–322 (2015).
  • [20] Knypinski L., Nowak L., Optimization of the permanent magnet brushless DC motor employing finite element method, Compel – The International Journal For Computation And Mathematics In Electrical And Electronic Engineering, vol. 32, pp. 1189–1202 (2013).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a686695-dfc3-4ec2-a0cc-2cee13d259fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.