PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global stochastic seismic inversion using turning bands simulation and co-simulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we develop a 3D geostatistical seismic inversion method based on turning bands simulation and co-simulation to estimate acoustic impedance (AI) from seismic and well data. The proposed method uses an iterative approach based on cross-over concept in genetic algorithm optimization to perform global stochastic inversion. The objective function of the optimization algorithm is the measure of correlation coefficients between the modeled and observed seismic data. In the first iteration of the proposed algorithm, the seismic cubes corresponding to the AI realizations generated by the turning bands simulation are compared to the observed seismic data. Subsequently, the local areas of AI models producing the highest correlation coefficients to the observed seismic data are merged to construct a new supplementary cube that is further used as the secondary variable in the turning bands co-simulation for the next iteration. Generation of the seismic cubes and picking the best AI cube via cross-over genetic algorithm approach is performed iteratively until convergence to a constant correlation coefficient between the modeled and observed seismic data. The proposed method is applied to a synthetic dataset that includes 20 wells with known AI logs and 3D stacked seismic data. According to the results, the algorithm converges to a constant correlation coefficient after a few iterations. In addition, it is observed that employing multi-attribute analysis outputs (meta-attributes) during turning bands co-simulation in the initialization step would improve the final global correlation coefficient from 0.774 to 0.815.
Czasopismo
Rocznik
Strony
1717--1734
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Institute of Geophysics, University of Tehran, Tehran, Iran
autor
  • CoCoLink Corp, Subsidiary of Seoul National University Techno Holdings, Seoul, Republic of Korea
autor
  • Faculty of Petroleum Engineering, Sahand University of Technology, Tabriz, Iran
autor
  • Department of Mining Engineering, Birjand University of Technology, Birjand, Iran
  • School of Mining and Geosciences, Nazarbayev University, Nur-Sultan city, Kazakhstan
Bibliografia
  • 1. Almeida AS, Journel AG (1994) Joint simulation of multiple variables with a Markov-type coregionalization model. Math Geol 26:565–588. https://doi.org/10.1007/BF02089242
  • 2. Arroyo D, Emery X (2017) Spectral simulation of vector random fields with stationary Gaussian increments in d-dimensional Euclidean spaces. Stoch Environ Res Risk Assess 31:1583–1592. https://doi.org/10.1007/s00477-016-1225-7
  • 3. Azevedo L, Nunes R, Correia P, Soares A, Guerreiro L, Neto G (2014) Multidimensional scaling for the evaluation of a geostatistical seismic elastic inversion methodology. Geophysics 79(1):1–10. https://doi.org/10.1016/j.cageo.2007.10.007
  • 4. Azevedo L, Soares A (2017) Geostatistical methods for reservoir geophysics. First ed. Springer, New York
  • 5. Azevedo L, Demyanov V (2019) Multi-scale uncertainty quantification in geostatistical seismic inversion. Geophysics 84(3):355–369. https://doi.org/10.1190/geo2018-0329.1
  • 6. Bortoli LJ, Alabert F, Haas A, Journel A (1993) Constraining stochastic images to seismic data. In: Soares A (ed) Geostatistics tróia ’92 quantitative geology and geostatistics, vol 5. Springer, Dordrecht
  • 7. Bosch M, Mukerji T, González EF (2010) Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics 75(5):165–176. https://doi.org/10.1190/1.3478209
  • 8. Buland A, Omre H (2003) Bayesian linearized AVO inversion. Geophysics 68(1):185–198. https://doi.org/10.1190/1.1543206
  • 9. Chiles JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, NewYork
  • 10. Chopra S, Marfurt KJ (2005) Seismic attributes – a historical perspective. Geophysics 70(5):3–28. https://doi.org/10.1190/1.2098670
  • 11. De Figueiredo LP, Grana D, Roisenberg M, Rodrigues BB (2019) Gaussian mixture MCMC method for linear seismic inversion. Geophysics 84(3):R463–R476. https://doi.org/10.1190/geo2018-0529.1
  • 12. Emery X (2004) Testing the correctness of the sequential algorithm for simulating Gaussian random fields. Stoch Env Res Risk Assess 18:401–413. https://doi.org/10.1007/s00477-004-0211-7
  • 13. Emery X, Lantuéjoul C (2006) TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput Geosci 32(10):1615–1628. https://doi.org/10.1016/j.cageo.2006.03.001
  • 14. Emery X (2008) A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. Comput Geosci 34(12):1850–1862. https://doi.org/10.1016/j.cageo.2007.10.007
  • 15. Eze PN, Madani N, Adoko AC (2019) Multi-variate mapping of heavy metals spatial contamination in a Cu–Ni exploration field (Botswana) using turning bands co-simulation algorithm. Nat Resour Res 28(1):109–124. https://doi.org/10.1007/s11053-018-9378-3
  • 16. Grana D, Fjeldstad T, Omre H (2017) Bayesian Gaussian mixture linear inversion for geophysical inverse problems. Math Geosci 49(4):493–515. https://doi.org/10.1007/s11004-016-9671-9
  • 17. Haas A, Dubrule O (1994) Geostatistical inversion: a sequential method for stochastic reservoir modeling constrained by seismic data. First Break 12:561–569. https://doi.org/10.1007/978-94-011-1739-5_27
  • 18. Hampson DP, Schuelke SJ, Quirein JA (2001) Use of multi-attribute transforms to predict log properties from seismic data. Geophysics 66(1):220–236. https://doi.org/10.1190/1.1444899
  • 19. Helterbrand JD, Cressie N (1994) Universal cokriging under intrinsic coregionalization. Math Geol 26:205–226. https://doi.org/10.1007/BF02082764
  • 20. Journel AG, Huijbregts ChJ (1978) Mining geostatistics. Academic Press, New York
  • 21. Lantuejoul C (2002) Geostatistical simulation: models and algorithms. Springer-Verlag, Berlin
  • 22. Madani N, Emery X (2019) Comparison of search strategies to design the cokriging neighborhood for predicting coregionalized variables. Stoch Environ Res Risk Assess 33:183–199. https://doi.org/10.1007/s00477-018-1578-1
  • 23. Madani N, Carranza EJM (2020) Co-simulated size number: an elegant novel algorithm for identification of multi-variate geochemical anomalies. Nat Resour Res 29:13–40. https://doi.org/10.1007/s11053-019-09547-9
  • 24. Manchuk JG, Deutsch CV (2012) Implementation aspects of sequential Gaussian simulation on irregular points. Comput Geosci 16:625–637.
  • 25. Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probab 5(3):439–468. https://doi.org/10.2307/1425829
  • 26. Myers DE (1989) Vector conditional simulation. In: Armstrong M (ed) Geostatistics quantitative geology and geostatistics vol 4. Springer, Dordrecht
  • 27. Nazari Ostad M, Emami Niri M, Darjani M (2018) 3D modeling of geomechanical elastic properties in a carbonates and stone reservoir: a comparative study of geostatistical co-simulation methods. J Geophys Eng 15(4):1419–1431. https://doi.org/10.1088/1742-2140/aaa983
  • 28. Paravarzar S, Emery X, Madani N (2015) Comparing sequential Gaussian and turning bands algorithms for cosimulating grades in multi-element deposits. Comptes Rendus Geosci 347(2):84–93. https://doi.org/10.1016/j.crte.2015.05.008
  • 29. Rice JA (2006) Mathematical statistics and data analysis. University of California, Berkeley
  • 30. Rivoirard J (2001) Which models for collocated cokriging? Math Geol 33(2):117–131. https://doi.org/10.1023/A:1007530600152
  • 31. Sabeti H, Moradzadeh A, Doulati Ardejani F, Azevedo L, Soares A, Pereira P, Nunes R (2017) Geostatistical seismic inversion for non-stationary patterns using direct sequential simulation and co-simulation. Geophys Prospect 65(1):25–48. https://doi.org/10.1111/1365-2478.12502
  • 32. Sadeghi M, Amini N, Falahat R, Sabeti H, Madani N (2019) 3D Acoustic impedance modeling using turning bands co-simulation and linear multi-attribute transform. 81st EAGE Conference and Exhibition. London, United Kingdom. Vol 2019. P 1–5. https://doi.org/10.3997/2214-4609.201900744
  • 33. Shmaryan LE, Journel AG (1999) Two Markov models and their application. Math Geol 31(8):965–988. https://doi.org/10.1023/A:1007505130226
  • 34. Soares A (2001) Direct sequential simulation and co-simulation. Math Geol 33(8):911–926. https://doi.org/10.1023/A:1012246006212
  • 35. Soares A, Diet JD, Guerreiro L (2007) Stochastic inversion with a global perturbation method. Petroleum Geostatistics, EAGE, Cascais. Portugal. 10–14. https://doi.org/10.3997/2214-4609.201403048
  • 36. Wackernagel H (2003) Multi-variate geostatistics: an introduction with applications. Springer, Berlin
  • 37. Xu W, Tran TT, Srivastava RM, Journel AG (1992) Integrating seismic data in reservoir modeling: the collocated cokriging alternative. 67th annual SPE technical conference and exhibition. pp 833–842. https://doi.org/10.2118/24742-MS
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a684c2b-ac74-410c-9e61-992f86d88aa0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.