PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite Element Analysis of SAW Sensor with ZnO Substrate for Dichloromethane (DCM) Gas Detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A SAW gas sensor based on Zinc Oxide (ZnO) piezoelectric substrate is simulated and evaluated for the detection of the dichloromethane (DCM) volatile organic compound (VOC). The study is performed based on the finite element method (FEM) using COMSOL Multiphysics software. The obtained device response using the ZnO substrate is compared to the one using the typical lithium niobate (LiNbO3) piezoelectric substrate. A thin film of polyisobutylene (PIB) membrane is selected to act as the sensing layer. The obtained results reveal a linear behaviour of the resonance frequency downshift (i.e., the sensor sensitivity) versus the investigated gas concentrations varying from 10 ppm to 100 ppm of DCM gas. Additionally, the sensor response is investigated by applying several thicknesses of PIB ranging from 0.3 µm to 1.0 µm. The observed sensor response shows less dependence on the PIB thickness using the ZnO substrate than the LiNbO3 one.
Słowa kluczowe
Rocznik
Strony
419--426
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Department of Physics, School of Sciences and Engineering, The American University in Cairo, Egypt
  • College of Engineering and Technology, American University of the Middle East, Kuwait
  • College of Engineering and Technology, American University of the Middle East, Kuwait
Bibliografia
  • 1. Aslam M. Z., Jeoti V., Karuppanan S., Malik A., Iqbal A. (2018), FEM analysis of Sezawa Mode SAW sensor for VOC based on CMOS compatible AlN/SiO2/Si, Multilayer Structure. Sensors, 18 (6): 1687, doi: 10.3390/s18061687.
  • 2. Beauchet R., Magnoux P., Mijoin J. (2007), Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/O-xylene) on zeolite catalysts, Catalysis Today, 124 (3-4): 118-123, doi: 10.1016/j.cattod.2007.03.030.
  • 3. Caliendo C., Laidoudi F. (2020), Experimental and theoretical study of multifrequency surface acoustic wave devices in a single Si/SiO2/ZnO piezoelectric structure, Sensors, 20 (5): 1380, doi: 10.3390/s20051380.
  • 4. Carlotti G., Socino G., Petri A., Verona E. (1987), Elastic constants of sputtered ZnO films, Proceedings of IEEE 1987 Ultrasonics Symposium, pp. 295-300, doi: 10.1109/ULTSYM.1987.198972.
  • 5. Deng Q., Yang X., Zhang J. S. (2012), Key factor analysis of VOC sorption and its impact on indoor concentrations: the role of ventilation, Building and Environment, 47: 182-187, doi: 10.1016/j.buildenv.2011.07.026.
  • 6. El-Shennawy K., Orabi M. S, Taha T. E. (2000), Simulation of high sensitivity and stability surface acoustic wave NO2 gas sensor based on amplitude variations as measurand, 22nd International Conference on Microelectronics, Vol. 2, pp. 611-614.
  • 7. Gowini M., Moussa W. (2010), A Finite Element Model of a MEMS-based Surface Acoustic Wave hydrogen sensor, Sensors, 10 (2): 1232-1250, doi: 10.3390/s100201232.
  • 8. Gualtieri J. G., Kosinski J. A., Ballato A. (1994), Piezoelectric materials for acoustic wave applications, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 41 (1): 53-59, doi: 10.1109/58.265820.
  • 9. Guo Y. J. et al. (2015), Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices, Smart Materials and Structures, 24 (12): 125015, doi: 10.1088/0964-1726/24/12/125015.
  • 10. Hands P. J. W., Laughlin P. J., Bloor D. (2012), Metal-polymer composite sensors for volatile organic compounds. Part 1. Flow-through chemi-resistors, Sensors and Actuators B: Chemical, 162 (1): 400-408, doi: 10.1016/j.snb.2011.12.016.
  • 11. Hernandez G., Wallis S. L., Graves I., Narain S., Birchmore R., Berry T-A. (2020), The effect of ventilation on volatile organic compounds produced by new furnishings in residential buildings, Atmospheric Environment: X, 6: 10069, doi: 10.1016/j.aeaoa.2020.100069.
  • 12. Hofer M. et al. (2006), Finite-element simulation of wave propagation in periodic piezoelectric SAW structures, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53 (6): 1192-1201, doi: 10.1109/tuffc.2006.1642518.
  • 13. Horrillo M. C. et al. (2006), Optimization of SAW sensors with a structure ZnO-SiO2-Si to detect volatile organic compounds, Sensors and Actuators B: Chemical, 118 (1-2): 356-361, doi: 10.1016/j.snb.2006.04.050.
  • 14. Huang H., Chiang H., Wu C., Lin Y., Shen Y. (2019), Analysis on characteristics of ZnO surface acoustic wave with and without micro-structures, Micromachines (Basel), 10 (7): 434, doi: 10.3390/mi10070434.
  • 15. Jang S. W. et al. (2006), Refractive index change by photoinduction of a UV-sensitive SMF-to-PWG coupler. IEEE Photonics Technology Letters, 18 (1): 220-222, doi: 10.1109/LPT.2005.861624.
  • 16. Jiang Q., Yang X. M, Zhou H. G, Yang J. S. (2005), Analysis of surface acoustic wave pressure sensors, Sensors and Actuators A: Physical, 118 (1): 1-5, doi: 10.1016/j.sna.2004.07.007.
  • 17. Joo B.-S., Lee J.-H., Lee E.-W., Song K.-D., Lee D.-D. (2005), Polymer film SAW sensors for chemical agent detection, [in:] Proceedings of the 1st Conference on Sensing Technology, Palmerston North, New Zealand, pp. 307-310.
  • 18. Karpina V. A. et al. (2004), Zinc oxide – analogue of GaN with new perspective possibilities, Crystal Research and Technology, 39 (11): 980-992, doi: 10.1002/crat.200310283.
  • 19. Koistinen K. et al. (2008), The INDEX project: executive summary of a European Union project on indoor air pollutants, Allergy, 63 (7): 810-819, doi: 10.1111/j.1398-9995.2008.01740.x.
  • 20. Kumar S., Kim G. H., Sreenivas K., Tandon R. P. (2009), ZnO based surface acoustic wave ultraviolet photo sensor, Journal of Electroceramics, 22 (1): 198-202, doi: 10.1007/s10832-007-9409-7.
  • 21. Lin H., Jang M., Suslick K. S. (2011), Preoxidation for colorimetric sensor array detection of VOCs, Journal of the American Chemical Society, 133 (42): 16786-16789, doi: 10.1021/ja207718t.
  • 22. Le Brizoual L., Elmazria O., Sarry F., El Hakiki M., Talbi A., Alno P. (2006), High frequency SAW devices based on third harmonic generation, Ultrasonics, 45 (1-4): 100-103, doi: 10.1016/j.ultras.2006.07.013.
  • 23. Leonhard M., Ismail M. (2004), Wireless measurement of temperature using surface acoustic waves sensors, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51 (11): 1457-1463, doi: 10.1109/TUFFC.2004.1367486.
  • 24. Lerch R. (1990), Simulation of piezoelectric devices by two- and three-dimensional finite elements, IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37 (3): 233-247, doi: 10.1109/58.55314.
  • 25. Liu X., Cheng S., Liu H., Hu S., Zhang D., Ning H. (2012), A survey on gas sensing technology, Sensors (Basel), 12 (7): 9635-9665, doi: 10.3390/s120709635.
  • 26. Ma W., Yang H., Wang W., Gao P., Yao J. (2011), Ethanol vapor sensing properties of triangular silver nanostructures based on localized surface plasmon resonance, Sensors, 11 (9): 8643-8653, doi: 10.3390/s110908643.
  • 27. Mombello D. et al. (2009), Porous anodic alumina for the adsorption of volatile organic compounds, Sensrs and Actuators B: Chemical, 137 (1): 76-82, doi: 10.1016/j.snb.2008.11.046.
  • 28. Ondo-Ndong R., Ferblantier G., Al Kalfioui M., Boyer A., Foucaran A. (2002), Properties of RF magnetron sputtered zinc oxide thin films, Journal of Crystal Growth, 255 (1-2): 130-135, doi: 10.1016/S0022-0248(03)01243-0.
  • 29. Ondo J., Blampain E., Mbourou G., Mc Murtry S., Hage-Ali S., Elmazria O. (2020), FEM modeling of the temperature influence on the performance of SAW sensors operating at gigahertz frequency range and at high temperature up to 500°C, Sensors (Basel), 20 (15): 4166, doi: 10.3390/s20154166.
  • 30. Özgür Ü. et al. (2005), A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98 (4): 041301, doi: 10.1063/1.1992666.
  • 31. Raj V. B., Singh H., Nimal A. T., Sharma M. U., Tomar M., Gupta V. (2017), Distinct detection of liquor ammonia by ZnO/SAW sensor: Study of complete sensing mechanism, Sensors and Actuators B: Chemical, 238: 83-90, doi: 10.1016/j.snb.2016.07.040.
  • 32. Roesch C., Kohajda T., Roeder S., von Bergen M., Schlink U. (2014), Relationship between sources and patterns of VOCs in indoor air, Atmospheric Pollution Research, 5 (1): 129-137, doi: 10.5094/APR.2014.016.
  • 33. Sua F.-C., Mukherjeeb B., Battermana S. (2013), Determinants of personal, indoor and outdoor VOC concentrations: An analysis of the RIOPA data, Environmental Research, 126: 192-203, doi: 10.1016/j.envres.2013.08.005.
  • 34. Tang I.-T., Chen H.-J., Hwang W. C., Wang Y. C., Houng M.-P., Wang Y.-H. (2004), Applications of piezoelectric ZnO film deposited on diamond-like carbon coated onto Si substrate under fabricated diamond SAW filter, Journal of Crystal Growth, 262 (1-4): 461-466, doi: 10.1016/j.jcrysgro.2003.10.081.
  • 35. Tonami S., Nishikata A., Shimizu Y. (1995), Characteristic of leaky surface acoustic wave propagating on LiNbO3 and LiTaO3 substrates, Japanese Journal of Applied Physics, 34 (Part 1, No. 5B): 2664-2667, doi: 10.1143/jjap.34.2664.
  • 36. Wang Z. L. (2004), Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, 16 (25): R829-R858, doi: 10.1088/0953-8984/16/25/R01.
  • 37. Wongchoosuk C., Wisitsoraat A., Tuantranont A., Kerdcharoen T. (2010), Portable electronic nose based on carbon nanotube-SnO2 gas sensors and its application for detection of methanol contamination in whiskeys, Sensors and Actuators B: Chemical, 147 (2): 392-399, doi: 10.1016/j.snb.2010.03.072.
  • 38. Yoon J. K., Seo G. W., Cho K. M., Kim E. S., Kim S. H., Kang S. W. (2003), Controllable in-line UV sensor using a side-polished fiber coupler with photo-functional polymer, IEEE Photonics Technology Letters, 15 (6): 837-839, doi: 10.1109/LPT.2003.811341.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a67298f-12b1-4868-b7d9-15efbfb1f2b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.