PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Size of Iron Spherules Formed from Melted Micrometeoroids

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Movement of liquid iron micrometeoroid in the Earth atmosphere is simulated to find the time-dependence of its acceleration, velocity and coordinates as well as the length of luminous trajectory when the micrometeoroid is still melted. In the simulations it is assumed that the maximum size of the stable droplet is determined by aerodynamic fragmentation of the moving droplet occurring when the Weber number exceeds its critical value. Two different initial altitudes h of droplet formation were analysed: 80 km and 50 km, both for a wide range of initial velocities between 6 and 20 km/s. Depending on their initial velocity, exceeding the Earth’s escape velocity equal 11.2 km/s, the maximum radius of solid spherules, emerging from solidified final droplet, is predicted here to lie between (a) 55 and 100 μm for h = 80 km, and (b) 10 and 30 μm for h = 50 km.
Twórcy
  • Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology,
Bibliografia
  • 1. Grachev A.F., Korchagin O.A., Tselmovich V.A., Kollmann H.A. Cosmic dust and micrometeorites in the transitional clay layer at the Cretaceous−Paleogene boundary in the gams section (Eastern Alps): Morphology and chemical composition. Izvestiya,
  • Physics of the Solid Earth 2008; 44: 555-569.
  • 2. Korchagin O.A. Metallic microspheres and microparticles in lower Cenomanian sediments of the Crimea: Evidence for the cosmic dust event. Doklady Earth Sciences 2010; 431(2): 441-444.
  • 3. Grebennikov A.V. Endogene spherules of Cretaceous-Paleogene ignimbrite complexes of Yakutinskaya volcane-tectonic structure (Primorye). Proceedings of the Russian Mineralogical Society 2011; 140(3): 56-68.
  • 4. Pettersson H., Frederiksson K. Magnetic spherules in deep-sea deposits, Pacific Science 1958; 12: 71-81.
  • 5. Khisina N.R., Badyukov D.D., Wirth R. Microtexture, nanomineralogy, and local chemistry of cryptocrystalline cosmic spherules. Geochemistry International 2016; 54: 68-77.
  • 6. Szöőr G., Elekes Z., Rózsa P., Uzonyi I., Simulák J., Kiss Á.Z. Magnetic spherules: Cosmic dust or markers of a meteoritic impact? Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2001; 181(1-4): 557-562.
  • 7. Sungatullin R.H., Bakhtin A.I., Sungatullina G.M. Tsel’movich V.A. Glukhov M.S. Osin Y.N., Vorobiev V.V. Composition and morphology of metal microparticles in Paleozoic sediments of Caspian depression. International Journal of Applied Engineering Research 2015; 10(24): 45372-45382.
  • 8. Zhang H., Shen S.Z. Cao C.Q., Zheng Q.F. Origins of microspherules from the Permian–Triassic boundary event layers in South China. Lithos 2014; 204: 246-257.
  • 9. Kirichenko K.Y., Drozd V.A., Chaika V.V., Gridasov A.V., Kholodov A.S., Karabtsov A.A., Golokhvast K.S. Nano-and microparticles in welding aerosol: electronic and microscopic analysis. Physics Procedia 2017; 86: 54-60.
  • 10. Stankowski W.T.J., Katrusiak A., Budzianowski A. Crystallographic variety of magnetic spherules from Pleistocene and Holocene sediments in the Northern foreland of Morasko-Meteorite Reserve. Planetary and Space Science 2006; 54(1): 60-70.
  • 11. Moilanen J., Gritsevich M., Lyytinen E. Determination of strewn fields for meteorite falls. Monthly Notices of the Royal Astronomical Society 2021; 503(3): 3337-3350.
  • 12. Wacheul J.B., Le Bars M., Monteux J., Aurnou J.M. Laboratory experiments on the breakup of liquid metal diapirs. Earth and Planetary Science Letters 2014; 403: 236-245.
  • 13. Flock A.K., Guildenbecher D.R., Chen J., Sojka P.E., Bauer H.J. Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops. International Journal of Multiphase Flow 2012; 47: 37-49.
  • 14. Bakhtin A.I., Sungatullin R.K., Sonin G.V., Gusev A.V., Kuzina D.M., Sungatullina G.M. Breaking of the meteor particles in the atmosphere of the Earth and creation of magnetic microspheres, Meteoritic and Planetary Science 2018; 53: 6296-6296.
  • 15. Popkiewicz M., Kardaś A., Malinowski Sz. Nauka o klimacie (Eng. Climate science). Wydawnictwo Sonia Draga, Warsaw, 2018.
  • 16. Čapek D., Koten P., Borovička J., Vojáček V., Spurný P., Štork R. Small iron meteoroids-observation and modeling of meteor light curves. Astronomy and Astrophysics 2019; 625: A106.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a600a25-929c-4d16-8787-cb5dfd69a513
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.