PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Acid Red 27, Reactive Black 5 and Acid Green 16 from Aqueous Solutions using Potassium Ferrate(VI)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Usuwanie barwników Acid Red 27, Reactive Black 5 and Acid Green 16 z roztworów wodnych z zastosowaniem żelazianu(VI) potasu
Języki publikacji
EN
Abstrakty
EN
The article presents the possibility of using potassium ferrate(VI) (K2FeO4) to remove dyes (Acid Red 27, Reactive Black 5, Acid Green 16) belonging to the single azo, double azo and triarylmethane classes from aqueous solutions with an initial concentration of 100 mg/l (Chemical Oxygen Demand (COD) values for AR27, RB5 and AG16 sulutions were 172, 156 and 198 mg O2/l, respectively). For the most favorable values of oxidation parameters of AR27 and RB5 (pH 7, K2FeO4 concentration, 180 and 240 mg/l, respectively, reaction time 10 min), visual discolouration of the aqueous solutions investigated and a decrease in COD values of 83.7% and 81.4%, respectively, were achieved. In the case of AG 16 dye, in the most favorable conditions of the oxidation process (pH 3, K2FeO4, concentration 300 mg/l, 15 min), visual discolouration and a decrease in the COD value of 83.8% were also obtained. The probable reasons for the higher resistance of AG16 to oxidation using K2FeO4 compared to AR27 and RB5 were also explained, based on the analysis of the structure and type of bonds present in the molecule AG 16.
PL
W artykule przedstawiono możliwość zastosowania żelazianu(VI) potasu (K2FeO4) do usuwania barwników (Acid Red 27, Reactive Black 5, Acid Green 16), należących do barwników azowych i triarylometanowych z roztworów wodnych o stężeniu początkowym 100 mg/dm3 (wartości ChZT(Cr) dla roztworów Acid Red 27, Reactive Black 5 i Acid Green 16 wynosiły odpowiednio 172, 156 i 198 mg O2/dm3). Dla najkorzystniejszych wartości parametrów procesu utleniania Acid Red 27, Reactive Black 5 (pH 7, stężenie K2FeO4 odpowiednio 180 i 240 mg/dm3, czas reakcji 10 min.), uzyskano wizualne odbarwienie badanych roztworów wodnych oraz zmniejszenie wartości ChZT(Cr), odpowiednio o 83,7% i 81,4%. W przypadku barwnika Acid Green 16, w najkorzystniejszych warunkach przebiegu procesu utleniania (pH 3, stężenie K2FeO4 300 mg/dm3, czas reakcji 15 min.), uzyskano także wizualne odbarwienie oraz zmniejszenie wartości ChZT(Cr) o 83,8%. Wyjaśniono też prawdopodobne przyczyny większej odporności Acid Green 16 w stosunku do Acid Red 27 i Reactive Black 5 na utlenianie z zastosowaniem K2FeO4, na podstawie analizy budowy i rodzaju wiązań obecnych w cząsteczce barwnika Acid Green 16.
Rocznik
Strony
71--75
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Chemiqua Company, ul. Skawińska 25/1, 31-066 Kraków, Poland
autor
  • Graduate of Silesian Environmental Doctoral Studies of the Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
  • Silesian University of Technology, Institute of Water and Wastewater Engineering, ul. Konarskiego 18, 44-100 Gliwice, Poland
autor
  • State Higher Vocational School in Tarnów, Institute of Mathematical and Natural Science, ul. Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
  • 1. Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater – a review. Science of Total Environment 2004; 333: 37–58.
  • 2. Tunay O, Kabdasli I, Eremektar G, Orhon D. Color removal from textile wastewaters. Water Science and Technology 1996; 34: 9–16.
  • 3. Cassano A, Molinari R, Romano M, Drioli E. Treatment of aqueous effluents of the leather industry by membrane processes: A review. Journal of Membrane Science 2001; 181: 111– 126.
  • 4. Aksu Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry 2005; 40: 997–1026.
  • 5. Pagga U, Brown D. The degradation of dyestuffs. Chemosphere 1986; 15: 479–491.
  • 6. Banat IM, Nigam P, Singh D, Marchant R. Microbial decolourization of textile-dye-containing effluents. Bioresource Technology 1996; 58: 217–227.
  • 7. Mekkawy HA, Ali MO, El-Zawahry AM. Toxic effect of synthetic and natural food dyes on renal and hepatic functions in rats. Toxicology Letters 1998; 95: 155.
  • 8. Srinivasan K, Bhargava MM. Hepatic binding proteins translocating azo dye carcinogen metabolites from cytoplasm into nucleus in rats. Food and Chemical Toxicology 2004; 42: 503–508.
  • 9. Crini G. Non-conventional low-cost adsorbents for dye removal. Bioresource Technology 2006; 97: 1061–1085.
  • 10. Sharma J, Janveja B. A study on removal of congo red dye from the effluents of textile Industry using rice husk carbon activated by steam. Rasayan Journal of Chemistry 2008; 1, 4: 936-942
  • 11. Bhattacharya GK, Sharma A. Azadirachta indica leaf powder as an effective biosorbent for dyes: A case study with aqueous congo red solutions. Journal of Environmental Management 2004; 71: 217-219.
  • 12. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 2001; 77, 3: 247-255.
  • 13. Moradnia M, Panahifard M, Dindarlo K, Jamali HA. Optimizing potassium ferrate for textile wastewater treatment by RSM. Environmental Health Engineering and Management Journal 2016; 3, 3: 137–142.
  • 14. Jaafarzadeh Haghighifard NA, Jorfi S, Ahmadi M, Mirali S, Kujlu R. Treatment of mature landfill leachate by chemical precipitation and Fenton advanced oxidation process. Environmental Health Engineering and Management Journal 2016; 3, 1: 35-40.
  • 15. Dindarloo K, Jamali HA, Lakbala P, Mahmoodi H, Kazemi F. Feasibility of electrochemical oxidation process for treatment of saline wastewater. Environmental Health Engineering and Management Journal 2015; 2, 3: 129-34.
  • 16. Jiang JQ, Panagoulopoulos A, Bauer M, Pearce P. The application of potassium ferrate for sewage treatment. Journal of Environmental Management 2006; 79, 2: 215-220.
  • 17. Jiang J. Research progress in the use of ferrate(VI) for the environmental remediation. Journal of Hazardous Materials 2007; 146, 3: 617-623.
  • 18. Xu GR, Zhang YP, Li GB. Degradation of azo dye active brilliant red X-3B by composite ferrate solution. Journal of Hazardous Materials 2009; 161, 2-3: 1299-1305.
  • 19. Dong XL et al. Oxidative degradation of azo dye reactive red 2BF by potassium ferrate. Advanced Materials Research 2012; 518-523: 2617-2620.
  • 20. Wang ZH et al. Decolorization of mordant red 15 dye in water by potassium ferrate(VI). Advanced Materials Research 2014; 838-841: 2445-2448.
  • 21. PN-EN ISO 10523:2012 Water Quality. Determination of pH.
  • 22. Wei YL, Wang YS, Liu ChH. Preparation of potassium ferrate from spent steel pickling liquid. Metals 2015; 5: 1770-1787.
  • 23. PN-ISO 15705:2005 Water Quality. Determination of the Chemical Oxygen Demand Index. Small-scale. Sealed-tube Method.
  • 24. Sahinkaya S. Decolorization of reactive orange 16 via ferrate(VI) oxidation assisted by sonication. Turkish Journal of Chemistry 2017; 41: 577-586.
  • 25. Thomas M, Barbusiński K, Kliś S, Szpyrka E, Chyc M. Synthetic Textile Wastewater Treatment using Potassium Ferrate(VI) – Application of Taguchi Method for Optimisation of Experiment. FIBRES & TEXTILES in Eastern Europe 2018; 26, 3(129): 104-109. DOI: 10.5604/01.3001.0011.7313
  • 26. Thetford D. Triphenylmethane and related dyes. Kirk-Othmer Encyclopedia of Chemical Technology 2013; 1-12.
  • 27. Desai NF, Giles CH. Oxidation of Azo Dyes and its relations to Light Fading. Coloration Technology 1949; 65, 12: 639-649.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a5b54ef-5a3f-4ec2-9119-483a34df08ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.