PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identifying contaminants of coal-derived inertinite in charcoal briquettes : Preliminary findings of microscopic analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite the widespread popularity of charcoal-based grilling fuels, extensive studies have highlighted various pollutants linked to their production and combustion, posing potential risks to human health and the environment. Since the presence of impurities has been identified as a factor contributing to elevated emissions of harmful gases and particulate matter, a comprehensive quality assessment of grilling fuels is imperative to effectively manage and minimise potential risks to customer health and safety. While identifying many impurities in solid biomass fuels is possible through microscopic analysis, identifying fossil coal contaminants in charcoal briquettes can be challenging. The biggest difficulty arises when coal-derived inertinite and man-made charcoal need to be distinguished as both exhibit numerous visual similarities in microscopic images. Therefore, the goal of this study was to examine the optical morphology of inertinite and charcoal with the aim of differentiating them when they co-occur in charcoal briquettes. The results show that employing high differential interference (DIC) and fluorescence filters, coupled with reflected white light in microscopic analysis, can enhance the observations allowing for easier detection of impurities of inertinite in charcoal-based grilling fuels. Among the most notable distinctions are the high degree of cellular structure preservation and the presence of small pores and protrusions in man-made charcoal; these characteristics are typically absent in the inertinite fragments.
Wydawca
Rocznik
Tom
Strony
21--32
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
  • University of Silesia in Katowice, Institute of Earth Sciences, Bankowa St 12, 40-007 Katowice, Poland
  • University of Silesia in Katowice, Centre for Biomass Energy Research and Education, Będzińska St 60, 41-200, Sosnowiec, Poland
  • University of Silesia in Katowice, Institute of Earth Sciences, Bankowa St 12, 40-007 Katowice, Poland
  • University of Silesia in Katowice, Centre for Biomass Energy Research and Education, Będzińska St 60, 41-200, Sosnowiec, Poland
Bibliografia
  • Adam, J.C. (2009) “Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal),” Renewable Energy, 34, pp. 1923–1925. Available at: https://doi.org/10.1016/J.RENENE.2008.12.009.
  • Akowuah, J.O., Kemausuor, F. and Mitchual, S.J. (2012) “Physico-chemical characteristics and market potential of sawdust charcoal briquette,” International Journal of Energy and Environmental Engineering, 3, 20. Available at: https://doi.org/10.1186/2251-6832-3-20.
  • Allué, E., Euba, I. and Solé, A. (2009) “Charcoal taphonomy: The study of the cell structure and surface deformations of Pinus sylvestris type for the understanding of formation processes of archaeological charcoal assemblages,” Journal of Taphonomy, 7(2–3), pp. 57–72.
  • Archangelsky, S. (1996) “Aspects of Gondwana paleobotany: Gymnosperms of the Paleozoic-Mesozoic transition,” Review of Palaeobotany and Palynology, 90, pp. 287–302. Available at: https://doi.org/10.1016/0034-6667(95)00088-7.
  • Badyda, A. et al. (2020) “Simple comparison of barbecues vs. domestic stoves and boilers emissions,” Energies, 13. Available at: https://doi.org/10.3390/en13236245.
  • Badyda, A.J. et al. (2022) “Inhalation risk to PAHs and BTEX during barbecuing: the role of fuel/food type and route of exposure,” Journal of Hazardous Materials, 440, 129635. Available at: https://doi.org/10.1016/J.JHAZMAT.2022.129635.
  • Bielowicz, B. (2019) “Petrographic composition of coal from the Janina mine and char obtained as a result of gasification in the CFB gasifier,” Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 35(1), pp. 99–116. Available at: https://doi.org/10.24425/gsm.2019.128201.
  • Borowski, G., Stępniewski, W. and Wójcik-Oliveira, K. (2017) “Effect of starch binder on charcoal briquette properties,” International Agrophysics, 31, pp. 571–574. Available at: https://doi.org/10.1515/intag-2016-0077.
  • Cohen-Ofri, I. et al. (2006) “Modern and fossil charcoal: Aspects of structure and diagenesis,” Journal of Archaeological Science, 33, pp. 428–439. Available at: https://doi.org/10.1016/j.jas.2005. 08.008.
  • Dias, A.F. et al. (2021) “Tips on the variability of BBQ charcoal characteristics to assist consumers in product choice,” European Journal of Wood and Wood Products, 79, pp. 1017–1026. Available at: https://doi.org/10.1007/s00107-021-01659-5.
  • Dias Junior, A.F. et al. (2020) “Investigating the pyrolysis temperature to define the use of charcoal,” European Journal of Wood and Wood Products, 78, pp. 193–204. Available at: https://doi.org/10.1007/s00107-019-01489-6.
  • Drobniak, A. et al. (2021a) “Atlas of charcoal-based grilling fuel components,” Indiana Journal of Earth Sciences, 3. Available at: https://doi.org/10.14434/ijes.v3i1.32559.
  • Drobniak, A. et al. (2021b) “Atlas of wood pellet component,” Indiana Journal of Earth Sciences, 3. Available at: https://doi.org/10.14434/ijes.v3i1.31905.
  • Drobniak, A. et al. (2022) “Developing methodology for petrographic analysis of solid biomass in reflected light,” International Journal of Coal Geology, 253, 103959. Available at: https://doi.org/10.1016/j.coal.2022.103959.
  • Drobniak, A. et al. (2023a) “Interlaboratory study: Testing reproducibility of solid biofuels component identification using reflected light microscopy,” International Journal of Coal Geology, 277, 104331. Available at: https://doi.org/10.1016/J.COAL.2023.104331.
  • Drobniak, A. et al. (2023b) “Residential gasification of solid biomass: Influence of raw material on emissions,” International Journal of Coal Geology, 271, 104247. Available at: https://doi.org/10.1016/j.coal.2023.104247.
  • EN 1860-2:2005. Appliances, solid fuels and firelighters for barbecuing – Part 2: Barbecue charcoal and barbecue charcoal briquettes – Requirements and test methods. Brussels: European Committee for Standardization. Available at: https://www.cleanfuels.nl/Sitepdfs/EN-1860-2_eng_.pdf (Accessed: December 01, 2024).
  • Gabzdyl, W. and Hanak, B. (2005) “Surowce mineralne Górnośląkiego Zagłębia Węglowego i obszarów przyległych [Mineral resources of the Upper Silesian Coal Basin and adjacent areas],” Przegląd Geologiczny, 53(9). Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUS2-0015-0001 (Accessed: December 01, 2024).
  • Georgaki, M. et al. (2024) “Organic petrology in the service of public awareness: How safe are barbeque briquettes?,” International Journal of Coal Geology, 283, 104448. Available at: https://doi.org/10.1016/J.COAL.2024.104448.
  • Hudspith, V.A. and Belcher, C.M. (2017) “Observations of the structural changes that occur during charcoalification: implications for identifying charcoal in the fossil record,” Palaeontology, 60, pp. 503–510. Available at: https://doi.org/10.1111/PALA.12304.
  • ICCP (1998) “The new vitrinite classification (ICCP System 1994),” Fuel, 77, pp. 349–358. Available at: https://doi.org/10.1016/S0016-2361(98)80024-0.
  • ICCP (2001) “The new inertinite classification (ICCP System 1994),” Fuel, 80, pp. 459–471. Available at: https://doi.org/10.1016/S0016-2361(00)00102-2.
  • Iglesias, A., Artabe, A.E. and Morel, E.M. (2011) “The evolution of Patagonian climate and vegetation from the Mesozoic to the present,” Biological Journal of the Linnean Society, 103, pp. 409–422. Available at: https://doi.org/10.1111/j.1095-8312.2011.01657.x.
  • ISO 6344-3:2013. Coated abrasives – Grain size analysis – Part 3: Determination of grain size distribution of Microgrits P240 to P2500. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/56010.html (Accessed: December 01, 2024).
  • ISO 7404-2:2009. Methods for the petrographic analysis of coals – Part 2: Method of preparing coal samples. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/42798.html (Accessed: December 01, 2024).
  • ISO 7404-3:2009. Methods for the petrographic analysis of coals – Part 3: Method of determining maceral group composition. Geneva: International Organization for Standardization. Available at: https://www.iso.org/standard/42831.html (Accessed: December 01, 2024).
  • Jelonek, Z. et al. (2020a) “Assessing pellet fuels quality: A novel application for reflected light microscopy,” International Journal of Coal Geology, 222, 103433. Available at: https://doi.org/10.1016/j.coal.2020.103433.
  • 28. Jelonek, Z. et al. (2020b) “Environmental implications of the quality of charcoal briquettes and lump charcoal used for grilling,” Science of the Total Environment, 747, 141267. Available at: https://doi.org/10.1016/j.scitotenv.2020.141267.
  • Jelonek, Z. et al. (2021) “Emissions during grilling with wood pellets and chips,” Atmospheric Environment: X,” 12, 100140. Available at: https://doi.org/10.1016/j.aeaoa.2021.100140.
  • Jelonek, Z. and Jelonek, I. (2024) “Identifying contaminants of coal inertinite in charcoal briquettes: Preliminary findings of microscopic analysis,” Zenodo. Available at: https://doi.org/10.5281/zenodo.10842491.
  • Jenkins, B., Baxter, L. and Miles, T. (1998) “Combustion properties of biomass,” Fuel Processing Technology, 54, pp. 17–46. Available at: https://doi.org/10.1016/S0378-3820(97)00059-3.
  • Jiang, D. et al. (2018) “Occurrence, dietary exposure, and health risk estimation of polycyclic aromatic hydrocarbons in grilled and fried meats in Shandong of China,” Food Science of Nutrition, 6, pp. 2431–2439. Available at: https://doi.org/10.1002/fsn3.843.
  • Kabir, E., Kim, K.H. and Yoon, H.O. (2011) “Trace metal contents in barbeque (BBQ) charcoal products,” Journal of Hazardous Material, 185(1–2), pp. 1418–1424. Available at: https://doi.org/10.1016/j.jhazmat.2010.10.064.
  • Kandiyoti, R., Herod, A.A. and Bartle, K.D. (2006) “Fossil fuels: Origins and characterization methods,” in: Solid fuels and heavy hydrocarbon liquids. Amsterdam: Elsevier Ltd., pp. 13–35. Available at: https://doi.org/10.1016/B978-008044486-4/50002-7.
  • Kim Oanh, N.T., Nghiem, L.H. and Phyu, Y.L. (2002) “Emission of polycyclic aromatic hydrocarbons, toxicity, and mutagenicity from domestic cooking using sawdust briquettes, wood, and kerosene,” Environmental Science and Technology, 36, pp. 833– 839. Available at: https://doi.org/10.1021/es011060n.
  • Kruszewska, K. and Dybova-Jachowicz, S. (1997) Zarys petrologii węgla [Outline of coal petrology]. Katowice: Wydaw. UŚl.
  • Kuś, S., Jelonek, I. and Jelonek, Z. (2023) “Effects of thermal treatment of food using barbecue fuels on ambient air and beach sands within recreation facilities,” Scientific Reports, 13, 17621. Available at: https://doi.org/10.1038/s41598-023-45023-4.
  • Manabe, T. et al. (2007) “Effect of carbonization temperature on the physicochemical structure of wood charcoal,” Transactions of the Materials Research Society of Japan, 32, pp. 1035–1038. Available at: https://doi.org/10.14723/TMRSJ.32.1035.
  • Mastalerz, M., Drobniak, A. and Hower, J.C. (2021) “Changes in chemistry of vitrinite in coal through time: Insights from organic functional group characteristics,” International Journal of Coal Geology, 235, 103690. Available at: https://doi.org/10.1016/j.coal.2021.103690.
  • Maziarka, P. et al. (2024) “Part 1 – Impact of pyrolysis temperature and wood particle length on vapor cracking and char porous texture in relation to the tailoring of char properties,” Energy and Fuels, 38(11), pp. 9751–9771. Available at: https://doi.org/10.1021/acs.energyfuels.4c00937.
  • Mencarelli, A. et al. (2023) “Charcoal-based products combustion: Emission profiles, health exposure, and mitigation strategies,” Environmental Advances, 13, 100420. Available at: https://doi.org/10.1016/j.envadv.2023.100420.
  • Morga, R. (2010) “Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis,” International Journal of Coal Geology, 84, pp. 1– 15. Available at: https://doi.org/10.1016/J.COAL.2010.07.003.
  • O’Keefe, J.M.K. et al. (2013) “On the fundamental difference between coal rank and coal type,” International Journal of Coal Geology, 118, 58–87. Available at: https://doi.org/10.1016/J.COAL.2013.08.007.
  • Pickel, W. et al. (2017) “Classification of liptinite – ICCP System 1994,” International Journal of Coal Geology, 169, pp. 40–61. Available at: https://doi.org/10.1016/J.COAL.2016.11.004.
  • Scott, A.C. and Glasspool, I.J. (2007) “Observations and experiments on the origin and formation of inertinite group macerals,” International Journal of Coal Geology, 70(1–3), pp. 53–66. Available at: https://doi.org/10.1016/J.COAL.2006.02.009.
  • Stach, E. et al. (1982) Stach’s textbook of coal petrology. 3rd ed. Berlin–Stuttgard, Germany: Gebrueder Borntraeger.
  • Surup, G.R. et al. (2019) “Characterization and reactivity of charcoal from high temperature pyrolysis (800–1600°C),” Fuel, 235, pp. 1544–1554. Available at: https://doi.org/10.1016/j.fuel.2018.08.092.
  • Taylor, G.H. et al. (1998) Organic petrology. Stuttgart, Germany: Schweizerbart Science Publishers.
  • Tintner, J. et al. (2018) “Impact of pyrolysis temperature on charcoal characteristics,” Industrial & Engineering Chemistry Research, 57, pp. 15613–15619. Available at: https://doi.org/10.1021/acs.iecr.8b04094.
  • Tumuluru, J.S. et al. (2012) “Formulation, pretreatment, and densification options to improve biomass specifications for Co-firing high percentages with coal,” Industrial Biotechnology, 8(3), pp. 113–132. Available at: https://doi.org/10.1089/ind.2012.0004.
  • Vicente, E.D. et al. (2018) “Particulate and gaseous emissions from charcoal combustion in barbecue grills,” Fuel Processing Technology, 176, pp. 296–306. Available at: https://doi.org/10.1016/j.fuproc.2018.03.004.
  • Viegas, O. et al. (2012) “Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods,” Food and Chemical Toxicology, 50, pp. 2128–2134. Available at: https://doi.org/10.1016/j.fct.2012.03.051.
  • Wagner, N.J. and Falcon, R.M.S. (2023) “Coal petrography,” in D. Osborne (ed.) The coal handbook. Vol. 1: Towards cleaner coal supply chains. 2nd edn. 1. Sawstone: Woodhead Publishing, pp. 23–51. Available at: https://doi.org/10.1016/B978-0-12- 824328-2.00012-1.
  • Ward, C.R. (2003) “Coal geology,” in R.A. Meyers (ed.) Encyclopedia of physical science and technology. 3rd edn. Cambridge: Academic Press, pp. 45–77. Available at: https://doi.org/10.1016/B0-12-227410-5/00111-3.
  • Wilson, J.P. et al. (2017) “Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate,” New Phytologist, 215, pp. 1333–1353. Available at: https://doi.org/10.1111/NPH.14700.
  • Yu, K.P. et al. (2020) “Effects of oil drops and the charcoal’s proximate composition on the air pollution emitted from charcoal barbecues,” Aerosol and Air Quality Research, 20, 1480–1494. Available at: https://doi.org/10.4209/aaqr.2019.01.0042.
  • Zeiss (2024a) Axio Imager 2 from Carl Zeiss. DIC + fluorescence. Jena: Carl Zeiss MicroImaging GmbH. Available at: https://mikroskop.com.pl/pdf/Broszura-Zeiss-Axio-Imager.pdf (Accessed: December 01, 2024).
  • Zeiss (2024b) Differential Interference Contrast (DIC) microscopy. Jena: Carl Zeiss MicroImaging GmbH.Available at: https://zeiss-campus.magnet.fsu.edu/referencelibrary/basics/dic.html (Accessed: December 01, 2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a56b007-795a-496a-be11-5f55ea5e1c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.