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A copula-based method for reliability sensitivity analysis 
of structural system with correlated failure modes

Oparta na pojęciu kopuły metoda analizy czułości 
niezawodnościowej systemu konstrukcyjnego 

o skorelowanych przyczynach uszkodzeń
Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability and reliability 
sensitivity analysis of structural systems with multiple failure modes remains a persistent challenge. The key to deal with the prob-
lem lies in the correlation modelling between failure modes. In this paper, the Archimedean copulas are used as an alternative to 
solve the high-dimensional dependence modeling problem. The probability characteristics of failure modes are described by sto-
chastic perturbation technique, and the reliability index is estimated with the fourth-moment standardization method. Considering 
that the number of the potential failure modes of the structural systems are relatively large, the probabilistic network evaluation 
technique is adopted to reduce the computational complexity. The sensitivity analysis is then conducted using the matrix differen-
tial technology. The numerical examples show that the applied procedure is able to efficiently consider various failure modes of 
structural systems in probabilistic assessment and sensitivity analysis.

Keywords:	 reliability; reliability sensitivity; correlation analysis; copula.

Mimo poważnych osiągnięć w dziedzinie komputerowej analizy niezawodności, skutecznaocena niezawodności i analiza czuło-
ści niezawodnościowej systemów konstrukcyjnych o wielu przyczynach uszkodzeń pozostają ciągłym wyzwaniem. Kluczem do 
rozwiązania problemu jest modelowanie korelacji między przyczynami uszkodzeń. W niniejszym artykule zastosowano kopuły 
Archimedesa jako alternatywny sposób rozwiązania problemu modelowania zależności wysoko wymiarowych. Charakterystyki 
prawdopodobieństwa dla przyczyn uszkodzeń opisano przy pomocy metody zaburzeń stochastycznych, zaś wskaźnik niezawodno-
ści oszacowano metodą standaryzacji momentu czwartego rzędu. Biorąc pod uwagę, że liczba potencjalnych przyczyn uszkodzeń 
systemów konstrukcyjnych jest stosunkowo duża, wykorzystano technikę oceny z zastosowaniem sieci probabilistycznych, któ-
ra pozwala na zmniejszenie złożoności obliczeniowej. Następnie przeprowadzono analizę czułości przy użyciu metody macierzy 
równań różniczkowych. Przykłady liczbowe pokazują, że zastosowana procedura pozwala na skuteczną ocenę różnych przyczyn 
uszkodzeń systemów konstrukcyjnych w ramach oceny probabilistycznej oraz analizy czułości.

Słowa kluczowe:	 niezawodność; czułość niezawodnościowa; analiza korelacji; kopuła.

1. Introduction

Generally, structural system is composed of multiple components, 
the state of the structural system (failure or safe) depends on that of 
each component. The reliability of the structural system is then de-
termined by the component reliability. Comparing with the reliability 
analysis of single structure element, the system reliability analysis be-
comes more difficult especially when the failure of the components 
is correlated.

The reliability analysis methods for structural system, such as 
Monte Carlo simulation method, bound method, and surrogate model 
method, has provided as efficient approaches for system reliability 
analysis. However, the methods have their own limitations. The Mon-
te Carlo simulation method demanded enormous computational cost 
for assessing the low probability events [16]. The bound method have 
been widely used for computing reliability interval on the probabili-
ties of series and parallel system, but cannot give a determined value 
[5, 19]. The first-order system reliability method transforms system 
reliability problems into multi-normal calculations based on the re-
sults of component reliability [8,10], which is applicable to series and 
parallel system reliability problems. The surrogate model method is 
very useful and effective dealing with implicit limit state function 

problems [1]. Zhao proposed a moment-based method for structural 
system reliability assessment which is applicable to both series and 
non-series systems [23]. Kang proposed a matrix-based system reli-
ability (MSR) method to estimate the probabilities of complex system 
events by simple matrix calculations [9].

The existing system reliability methods are not flexible in incor-
porating various types and amount of available information on com-
ponents and their statistical dependence. The Pearson correlation co-
efficient is frequently used to describe the linear correlation between 
failure modes, whereas the correlation of failure modes in structural 
systems are generally nonlinear. As a tool to establish a joint distri-
bution function from its marginal distributions, copula functions are 
often adopted to solve the correlation problems [6,21]. Copula func-
tions are useful tools for modeling dependence among the compo-
nents. They provide a way of specifying joint distributions if only 
the marginal distributions are known. In terms of system reliability 
of multiple failure modes, the multivariate distribution could be built 
using the marginal distributions of each failure mode and the copula 
function.

Reliability-based sensitivity refers to the partial derivative of the 
reliability with respect to basic random variables [13, 24]. It ranks the 
design variables and guides the reliability design [25]. Reliability sen-
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sitivity analysis has been used to obtain the change rate of a structure 
response due to the random inputs [11, 12]. In terms of system reli-
ability sensitivity problem, the independent assumption of multiple 
failure modes may lead to incorrect result. Thus, it is important to 
develop an efficient method for the reliability-based sensitivity esti-
mation with dependent failure modes.

A novel method is proposed here to deal with the system reliabil-
ity and reliability-based sensitivity problem of the structural systems. 
The stochastic perturbation technique is adopted to obtain the first 
few moments of the limit state function of failure mode. The fourth-
moment standardization method is then used to calculate the reliabil-
ity of each failure mode. The correlation between failure modes are 
estimated with the copula-based cumulated distribution function. The 
reliability-based sensitivity with respect to the random variables is 
then obtained by the matrix differential technology. 

Section 2 provides an introduction to copulas. Section 3 firstly 
describes the reliability modeling procedure of the component reli-
ability and then develops the method into the system level. Section 4 
proposes the reliability-based sensitivity modeling procedure based 
on the system reliability model. Section 5 applies the newly derived 
method to the structural system problems, comparing its accuracy to 
sampling methods. Section 6 provides some conclusions on the pro-
posed method.

2. Copulas

The copula of a multivariate distribution describes not only the 
correlations of the random variables, but also the dependence struc-
ture. It is uncoupled from the marginal distributions which can be 
modeled as empirical distributions or fitted standard distributions as 
usual [17]. After modeling the marginal distributions, then 
the estimation of the corresponding copula function could 
be carried out. A compact definition of copula function is 
given in [21]. The use of copula is common in finance and 
insurance. In this paper, we propose to use copula for the 
analysis of correlated failure modes in structural systems.

According to the Sklar theory [20], let F gi i ( )X( )  and 

F gj j ( )X( )  denote the marginal distribution functions of 

the failure modes gi ( )X  and ( )jg X , respectively. The 

joint distribution function F g gij i j,( ) can be expressed 
as:

F g g C F g x F g xij i j i i j j, ,( ) = ( )( ) ( )( )          (1)

where C(u,v) is the copula function.
In the case of n marginal distribution functions, the joint distribu-

tion function of n failure modes could be similarly modeled as:

	 F g g g C F g x F g x F g xi j n i i j j n n, , , , , , ( ) = ( )( ) ( )( ) ( )( )     (2)

The Sklar theory provides an efficient way to model the depend-
ence structure of random variables with the copula functions. Howev-
er, the using of high-dimensional copula function makes it inevitably 
encounter the problem of parameter estimation, which is generally 
difficult to obtain. To overcome this problem, the Archimedean copu-
las are used as an alternative to solve the high-dimensional depend-
ence modeling problem. The family of Archimedean copulas has been 
studied extensively by a number of authors including [2, 4, 7, 22]. 
Well known representatives of the Archimedean family are Gumbel-
Hougaard, Frank and Clayton copula. The generator and parameter 

range of these Archimedean copulas are shown in Table 1, for more 
details, the reader is referred to [17]. Due to the characteristics of the 
Archimedean copula functions, any N-dimension Archimedes copula 
function could be deduced from a bivariant one [18]. Thus, the reli-
ability problem with multiple failure modes could be transformed into 
the bivariant form:

	

C u u u C C u u u

C u u u u C C u u u u
1 2 3 1 2 3

1 2 3 4 1 2 3 4

, , , ,

, , , , , ,

( ) = ( )( )
( ) = ( )( )

CC u u u u C C u u u uN N N N1 2 1 1 2 1, , , , , , , , − −( ) = ( )( )
	 (3)

Thus, the first derivation of the copula-based CDF with respecet 

to the random parameter ζ  (i.e. the mean, variance, et al.) can be 
obtained straightforwardly,
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In this paper, authors applied a useful application of the Gumbel-
Hougaard copula in the reliability analysis of structural systems . The 
distribution function of the Gumbel-Hougaard copula is as follows:

	 C u v u vG , ; exp ln lnθ θ θ

θ

( ) = − −( ) + −( )
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
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The expression of the first derivative of the Gumbel-Hougaard 
copula with respect to variable ( u and v ) could be obtained as:
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Table 1.	 The generator and parameter range of commonly used Archimedean copula func-
tions

Archimedean Copula Generator Parameter range

Clayton ϕ θθ
θx x( ) = +( )+

−1 1 θ α α≠ = { }+0 0, max ,

Gumbel-Hougaard ϕθ
θx x( ) = −( )exp 1 θ ≥1

Frank copula ϕ
θ

θ
θ x

x
x

( ) = − ( ) + −( ) −
( )











1 1
ln

exp exp
exp

θ ≠ 0

Ali-Mikhail-Haq ϕ
θ

θθ x
x

( ) = −
( ) −

1
exp θ ∈ −[ ]1 1,



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015452

Science and Technology

∂ ( )
∂

=
( )( ) + ( )( )







 ( )( )

( )

C v
v

u v v
G

u

µ
θ θ

θ

θ

,
-

ln ln ln
ln

- - - e
- -1 1 1 (( ) + ( )( )










( ) ( )( ) + ( )( )









1 1

1 1

θ θ

θ

θ θ

-

- -

ln

ln ln ln

v

v v u v
  (7)

3. Reliability estimation of structural systems

Structural systems normally have a variety of potential failure 
modes, which results in that the probabilistic analysis of the structural 
system is thus becomes a system reliability problem. Moreover, the 
correlation between failure modes can have a profound effect on their 
practical reliability and the neglect of such correlation may lead to 
excessive errors or even wrong conclusion.

Each failure mode caused by the failure of a group of structure 
components could be seemed as a parallel system, and the system 
failure could then be considered as a series failure of these failure 
modes. Consequently, the system reliability estimation of the struc-
tural system is to calculate the reliability of the series-parallel system. 
Generally, a parallel system formed from a failure path is seemed as 
a failure mode and the corresponding limit state function can be ob-
tained in mechanics. A structural system could therefore be simplified 
into a series system of multiple failure modes. 

The reliability problem of structural systems with multiple failure 
modes can be expressed as:

	 ( ) ( )
0

0 dGR P G f G G
∞

= > = ∫ 	 (8)

	 ( ) ( ) ( ) ( )( )T1 2, , , nG g g g=X X X X 	 (9)

where { } 1

n
i i

X
=

=X  denotes the random variable vector and G(X) de-

fines the limit state functions of multiple failure modes. 
The first four moment of the random variable X can be deduced 

as follows according to the perturbation theory:
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where	 (•)[k] represents the Kronecker product, i.e., 	  
(•)[k]=(•)⊗(•)⊗⋯⊗(•), (A)p×q⊗(B)s×t=[aijB]ps×qt.

Due to that the complete statistical information of random vari-
ables cannot be fully accessed in most practical cases, the statistical 
moments higher than the fourth order are difficult to obtain. Thus, 
the moments of each failure mode are considered here according to 

the engineering reality, the corresponding expression in matrix form 
could be obtained according to the perturbation theory 
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According to the reliability theory, for a given limit state function 

( )i iz g= X , the reliability index and reliability could be defined as:
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E
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i
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Equation (17) use only the first two moments, i.e. the mean and 
the variance of the limit state function, which is suitable for the case 
that the basic random variables are normally distributed. As a matter 
of fact, the distribution types of the random variables are unknown 
on most occasions, the complete probabilistic information needed is 
unable to obtain. To overcome this problem, the fourth-moment reli-
ability index is adopted here [23], and the reliability index of each 
failure mode could be expressed as the following equation according 
to the theory,
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where 3
3gi gi giα θ σ= , 4

4gi gi giα η σ=  represent the coefficients 

of skewness and kurtosis of the ith failure mode, respectively. giθ  

and giη  are the third and the fourth central moment of the ith failure 

mode.
Each failure mode can be represented as a limit state function

( )ig X , and the system reliability could then be expressed as:
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where ( )1 2, ,G nf g g g  is the joint probability density function of the 

potential failure modes.
Comparing to mechanical components, the failure of a structural 

system is usually accompanied with much more failure modes, which 
results in that the reliability analysis becomes much more complex. In 
order to overcome this problem, the probabilistic network evaluation 
technique (PNET) is adopted in this paper to identify the representa-
tive failure modes in structural system and reduce the complexity of 
the analysis procedure [15]. According to the PNET, failure modes of 
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which the correlation coefficient □ρij□>ρ0 are considered as highly 
correlated modes, and the one with a less reliability index is selected 
as the representative failure mode. By repeating the procedure, all the 
representative failure modes can be selected. By using PNET, the sys-
tem reliability problem of the structural system is simplified and only 
the representative failure modes is taken into account. In this case, 
according to the probabilistic theory and the copula-based cumula-
tive distribution functions, the failure probability of the structural 
system with respect to m representative failure modes could then be 
expressed as:
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where jP  denotes the failure probability of the jth representative fail-
ure mode.

4. Copula-based reliability sensitivity analysis

Based on the scheme of the reliability analysis of structural 
system, the structural sensitivity analysis could then be performed. 
Reliability-based sensitivity involves studying the dependence of the 
failure probability on design parameters and refers to the partial de-
rivative of the reliability with respect to design parameters ζ, such as 
the mean and the variance [14, 24].

Based on the matrix differential technology and copula-based 
joint probability distribution function, the reliability-based sensitivity 
with respect to random parameters of random variables (the mean ζ1 and the variance ζ2) considering correlated failure modes could be 
expressed as follows:
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According to the known probabilistic information of the random 
variables, the reliability sensitivity of the structure system with m cor-
related representative failure modes could be obtained based on the 
above equations.

5. Numerical examples

5.1.	 The beam-cable structural system

A simple beam-cable structural system is shown in Figure 1. The 
length of the beam is 2l=12m, the length of cables is L=3m. The cross 
section of the beam is a b×h rectangle. The cross sectional area of the 
cable is Ai (i=1,2). The plastic limit bending moment of the beam is M. 
The yield limit stress of the cable and the beam are σ1 and σ2, respec-
tively. q is the uniformly distributed load. The random variables (b, h, 
A1, A2, σ1, σ2 and q) with known first four moments are assumed to be 
independent, and the probabilistic properties are listed in Table 2.

There are four failure modes of the beam-cable structural system 
[23], the corresponding limit state functions are listed in Table 3.
(M=Wfy, W=bh2/6 is the section modulus of bending of the beam, 
with the coefficient fy=0.134).

According to the PNET method, the failure modes with the cor-
relation coefficients higher than ρ0=0.8 are selected as the representa-
tive failure modes, which are g2 and g1. Then, the system failure prob-
ability of the beam-cable system could be expressed as the following 
form according to equation (20).
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Fig. 1. Beam-cable structural system
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The failure probability of each failure mode and the joint failure 
probability could be calculated with equation (19-21) and equation 
(4), respectively:

	 1=0.0057P , 2  0.0052P = , ( )1 2, = 3.5e-04C P P

Thereout, the system failure probability and system reliability 
could be obtained as:

	 ( )1 2 1 2= , 0.0574P P P C P P+ − = , 0.1 9426R P= − =

To validate the result, a Monte Carlo simulation is carried out with 
106 samples and gives RMCS=0.9819, the relative error is ρP=|R-RMCS|/
RMCS=4%.

Based on the reliability analysis results, the reliability-based sen-
sitivity could then be obtained according to equation (21).
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2T
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2
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The results display that the failure probability of the beam-cable 
structural system descends as the dimension parameter b, h, Ai and 
yield stress σi increase, but increases as the load q rises. Among all 
the random variables considered, the failure probability has a high 
dependency on Ai.

5.2. 	 The six-bar truss structural system

As shown in Figure 2 is a six-bar truss structural system with five 
applied concentrated load Fi(i=1,2,…,5). All the bars are made of the 
same material with the yield limit σ. The cross section of each bar is 
Ai(i=1,2,…,6). The limit state functions of the potential failure modes 
of the structural system are listed in Table 4 [3]. The random variables 
(Ai, Fi, and σ) are independent with each other, and the probabilistic 
properties with known first four moments are listed in Table 5.

According to the PNET method, the rep-
resentative failure modes of the six-bar truss 
structural system is determined, which are g15, 
g1 and g6. The failure probability of each failure 
modes could be obtained as,

         15 =0.0657P , 1 =1.1102e-16P , 6 =0P

      ( )15 1 , =1.1102e-16C P P , ( )15 6 , =0C P P ,

             ( )1 6 , =0C P P , ( )15 1 6 , , =0C P P P

Thus, the system failure probability and the system reliability 
could be obtained as:

( ) ( ) ( ) ( )15 1 6 15 1 15 6 1 6 15 1 6, , , , , 0.0657P P P P C P P C P P C P P C P P P= + + − − − + =

	 =1 =0.9343R P−

To validate the result, a Monte Carlo simulation is carried out with 
106 samples and gives RMCS=0.9668, compare the result with that of 
the proposed method, the relative error is 𝜀R=|R-RMCS|/RMCS=3.36%. 

Based on the above results, the reliability-based sensitivity of the 
structural system could then be obtained according to equation (21).

Table 2.  The first four moments of random variables

Random variables Mean Standard deviation The third moment The fourth moment

b(mm) 152 0.76 1.4223e-1 1.1723

h(mm) 200 1 3.2400e-1 3.5140

A1(cm2) 6.45 0.032 1.0617e-5 3.6847e-6

A2(cm2) 3.32 0.017 1.5918e-6 2.9349e-7

σ1(MPa) 413.6 41.36 2.2924e4 1.0283e7

σ2(MPa) 300 30 8.7480e3 2.8463e6

q(kN/m) 29 5.84 6.4434e1 4.0791e3

Table 3.	 The limit state functions of the potential failure modes in example 5.1

g M ql1
26 2= − g M A l ql3 2 2

2 2= + −σ

g A l A l ql2 1 1 2 2
22 2= + −σ σ g M A l ql4 1 1

22= + −σ

Fig. 2. Six-bar truss structural system

Table 4.	 The limit state functions of the potential failure modes in example 5.2

g =3A +4A -4F -3F1 1 2 2 5σ σ g =20A +12A -15F +20F -15F9 2 6 1 2 4σ σ

g =A +A -F -F2 1 3 1 5σ σ g =3A +4A -4F -3F10 3 4 3 4σ σ

g =3A +4A -3F -4F -3F3 1 4 1 3 5σ σ g =5A +4A -5F11 3 5 1σ σ

g = 5A + 4A - 5F4 1 5 5σ σ g =5A +4A -5F12 3 6 4σ σ

g =5A +4A -4F -4F -4F5 1 6 1 4 5σ σ g =20A +12A -15F -20F -15F13 4 5 1 3 4σ σ

g =4A +3A -3F +4F6 1 3 1 2σ σ g =5A +3A -5F14 4 6 3σ σ

g =4A +4A -3F +4F -4F -3F7 2 4 1 2 3 4σ σ g =4A +4A -5F -5F15 5 6 1 4σ σ

g =5A +3A -5F8 2 5 2σ σ
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The results show that the failure probability of the six-bar truss 
structural system descends as the cross section of each bar Ai and the 
yield stress σ increase, but increases as the load Fi rises. It is necessary 
to mention that the system reliability sensitivity with respect to the 
variables A4 and F3 are 0 because of the two variables are not involved 
in the representative failure modes. Besides, in terms of the degree of 
influences, the system reliability is very sensitive to cross section A5, 
A6 and yield limit σ.

6.   Conclusions

This paper presents a system reliability and 
parameter sensitivity analysis method of structural 
systems with correlated failure modes. The reli-
ability of the component failure is estimated with 
the perturbation theory and the moment method. 
The system reliability of the structural system is 
firstly simplified by adopting the probabilistic net-
work evaluation technique , and then is analysed 
with consideration of the correlation between each 
component failure. The Archimedean copula func-
tion is served as the modelling tool to establish the 
copula-based joint distribution function. The pa-
rameter sensitivity analysis is realized by matrix 
differential technology. The results of the numeri-
cal examples serve as testimony to the effective-
ness of the proposed method and should be useful 

when considering the reliability problem of structural systems with 
correlated failure modes.
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Table 5.	 Probabilistic properties of random variables

Random variables Mean Standard deviation The third moment The fourth moment

A1(mm2) 

A2(mm2)
A3(mm2)
A4(mm2)
A5(mm2)
A6(mm2)

250
100
100
250
250
150

1.25
0.5
0.5
1.25
1.25
0.75

6.3281e-1
4.0500e-2
4.0500e-2
6.3281e-1
6.3281e-1
1.3669e-1

8.5791
2.1963e-1
2.1963e-1
8.5791
8.5791
1.1119

F1(kN)
F2(kN)
F3(kN)
F4(kN)
F5(kN)
σ(MPa)

50
30
30
20
20
240

2.5
1.5
1.5
1.0
1.0
12

5.0625
1.0935
1.0935
0.324
0.324
5.5987e2

1.3727e2
1.7790e1
1.7790e1
3.514
3.514
7.2866e4
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