PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of TiO2/ZSM-5 photocatalysts for degradation of rhodamine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ZSM-5 synthesized by the hydrothermal method from raw kaolin clay was used as support to prepare TiO2/ZSM-5 catalysts via the sol-gel method. All prepared samples were characterized by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), particle size analysis and surface area measurement. The photocatalytic performance of TiO2/ZSM-5 was investigated based on rhodamine B (RhB) removal under UV radiation (450-600 nm. The results showed that the kaolin clay was successfully transformed into ZSM-5. The BET surface area and pore size distribution of the synthesized ZSM-5 were 364 m2/g and 0.54 nm, respectively. SEM and TEM revealed that TiO2 nanoparticles were well distributed on the surface of ZSM-5. The composite TiO2/ZSM-5 catalyst showed 98.53% removal, which is higher than that of pure TiO2 (80.13%) due to adsorption and degradation of RhB (5.0 mg/dm3) under 60 min UV light irradiation at 1 g/dm3 photocatalyst loading. The synergistic effect of TiO2 and ZSM-5, including adsorption, conduction band electron (e-), and valence-band holes (h+), makes the composite superior to pure TiO2, showing its potential for the degradation of organic dye.
Słowa kluczowe
Rocznik
Strony
29--42
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
  • College of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuqing350300, Fujian, China
autor
  • College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
autor
  • College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
autor
  • College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
autor
  • College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China
autor
  • School of Tourism and Geography Science, Baicheng Normal University, Baicheng, Jilin 137000, China
autor
  • Graduate School of Environmental Management, Tajen University, Pingtung, Taiwan
Bibliografia
  • [1] MIYAKE K., YAMADA M., SUGIURA Y., HIROTA Y., UCHIDA Y., NISHIYAMA N., Synthesis of mesoporous MFI zeolite by dry gel conversion with ZnO particles and the catalytic activity on TMB cracking, J. Porous Mat., 2016, 23, 311–316. DOI: 10.1007/s10934-015-0083-x.
  • [2] HU J., LI H., MUHAMMAD S., WU Q., ZHAO Y., JIAO Q., Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances, J. Solid State Chem., 2017, 253, 113–120. DOI:10.1016/j.jssc.2017.05.034.
  • [3] YANG X., CUI H., LI Y., QIN J., ZHANG R.,TANG H., Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance, ACS Catal., 2013, 3, 363–369. DOI: 10.1021/cs3008126.
  • [4] XU X., YANG G., LIANG J., DING S.,TANG C., YANG H., YAN W., YANG G., YU D., Fabrication of one dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity, J. Mater. Chem. A, 2014, 2, 116–122. DOI: 10.1039/c3ta12863f.
  • [5] ZHANG L.J., LI S., LIU B.K.,WANG D.J., XIE T.F., Highly efficient CdS/WO3 photocatalysts: z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light, ACS Catal., 2014, 4, 3724–3729. DOI: 10.1021/cs500794j.
  • [6] XIE T., LIU C., XU L., YANG J., ZHOU W., Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity, J. Phys. Chem. C, 2013, 117, 24601–24610. DOI: 10.1021/jp408627e.
  • [7] TIMOUMI S.N., ALAMRI H., The development of TiO2-graphene oxide nano composite thin films for solar cells, Res. Phys., 2018, 11, 46–51. DOI: 10.1016/j.rinp.2018.06.017.
  • [8] DONG C., XING M., ZHANG J., Economic hydrophobicity triggering of CO2 photoreduction for selective CH4 generation on noble-metal-free TiO2–SiO2, J. Phys. Chem. Lett., 2016, 7, 2962–2966. DOI: 10.1021/acs.jpclett.6b01287.
  • [9] SUWARNKAR M.B., DHALABBE R.S., KADAM A.N., GARADKAR K.M., Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method, Ceram. Int., 2014, 40, 5489–5496. DOI: 10.1016/j.ceramint.2013.10.137.
  • [10] ANDERSON C., BARD A.J., Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials, J. Phys. Chem. B, 1997, 101, 2611–2616. DOI: 10.1021/jp9626982.
  • [11] TAKEUCHI M., DEGUCHI J., HIDAKA M., SAKAI S., WOO K., CHOI P.P., PARK J.K., ANPO M., Enhancement of the photocatalytic reactivity of TiO2 nano-particles by a simple mechanical blending with hydrophobic mordenite (MOR) zeolite, Appl. Catal. B: Environ., 2009, 89, 406–410. DOI: 10.1016/j.apcatb.2008.12.022.
  • [12] ZNAD H., ABBAS K., HENA S., AWUAL M.R., Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media, J. Environ. Chem. Eng., 2018, 6, 218–227. DOI: 10.1016/j.jece.2017.11.077.
  • [13] CHEN X.S., JIANG R.L., ZHOU Z.H., WANG X.W., Synthesis and catalytic properties of ZSM-5 crystals with different morphologies in gelatin hydrogels, J. Disp. Sci. Technol., 2019, 1–8, 561–568. DOI: 10.1080/01932691.2019.1703735.
  • [14] SHEN K., QIAN W.,WANG N., ZHANG J., WEI F., Direct synthesis of c-axis oriented ZSM-5 nanoneedles from acid-treated kaolin clay, J. Mater. Chem. A, 2013, 1, 3272–3275. DOI: 10.1039/c3ta01479g.
  • [15] MIGNONI M.L., PETKOWICZ D.I., FERNANDES M.N., PERGHER S.B., Synthesis of mordenite using kaolin as Si and Al source, Appl. Clay Sci., 2008, 41, 99–104. DOI: 10.1016/j.clay.2007.09.010.
  • [16] YEONG Y.F., ABDULLAH A.Z., AHMAD A.L., BHATIA S., Process optimization studies of p-xylene separation from binary xylene mixture over silicalite-1 membrane using response surface methodology, J. Memb. Sci., 2009, 341, 96–108. DOI: 10.1016/j.memsci.2009.05.042.
  • [17] MENG Z., ZHANG X., QIN J., A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst, Nanosc., 2013, 5, 4687–4690. DOI: 10.1039 /c3nr00775h.
  • [18] HUANG H.B., HUANG H.L., FENG Q.Y., LIU G.Y., ZHAN Y.J., WU M.Y., LU H.X., SHU Y.J., LEUNG D.Y.C., Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation, Appl. Catal., B: Environ., 2017, 203, 870–878. DOI: 10.1016/j.apcatb.2016.10.083.
  • [19] ELROZ M., LAKISS L., ELFALLAH J., LEBEDEV O.I., THIBAULT S.F., VALTCHEV V., Incorporation of clusters of titanium oxide in beta zeolite structure by a new cold TiCl4-plasma process: physicochemical properties and photocatalytic activity, Phys. Chem. Chem. Phys., 2013, 15, 16198–16207. DOI: 10.1039/c3cp52478g.
  • [20] QIAN X., DU J., LI B., SI M., YANG Y., HU Y., NIU G., ZHANG Y.,XU H.,TU B., TANG Y., ZHAO D., Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites, Chem. Sci., 2011, 2, 2006–2016. DOI: 10.1039/c1sc00250c.
  • [21] BLASCO T., CORMA A., NAVARRO M.T., PARIENTE J.P., Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures, J. Catal., 1995, 156, 65–74. DOI: 10.1006/jcat.1995.1232.
  • [22] MEHDIPOURGHAZI M., MOHEB A., KAZEMIAN H., Incorporation of boron into nano-size MFI zeolite structure using a novel microwave-assisted two-stage varying temperatures hydrothermal synthesis, Micropor. Mesopor. Mat., 2010, 136, 18–24. DOI: 10.1016/j.micromeso.2010.07.011.
  • [23] WANG L., ZHANG J., WANG A., Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite, Desalin., 2011, 266, 33–39. DOI: 10.1016/j.desal.2010.07.065.
  • [24] MOHAMED R.M., ISMAIL A.A., OTHMAN I., IBRHIM I.A., Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA, J. Mol. Catal. A: Chem., 2005, 238, 151–157. DOI: 10.1016/j.molcata.2005.05.023.
  • [25] SUWARNKAR M.B., KADAM A.N., KHADE G.V., GAVADEL N.L., GARADKAR K.M., Modification of TiO2 nanoparticles by HZSM-5 for the enhancement in photodegradation of Acid Green 25, J. Mater. Sci.: Mater. Electron., 2016, 27, 843–851. DOI: 10.1007/s10854-015-3825-2.
  • [26] LI R., JIA Y., WU J., ZHEN Q., Photocatalytic degradation and pathway of oxytetracycline in aqueous solution by Fe2O3–TiO2 nanopowder, RSC Adv., 2015, 5, 40764-40771. DOI: 10.1039/c5ra04540a.
  • [27] GRABOWSKA E., RESZCZYNSKA J., ZALESKA A.R., Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review, Water Res., 2013, 46, 5453–5471. DOI: 10.1016/j.watres.2012.07.048.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a4c924b-bf56-4c49-8c85-4b1ef964b115
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.