PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikroplastik : źródła, techniki separacji i indywiduacji

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Microplastic : sources, separation and identification techniques
Języki publikacji
PL
Abstrakty
EN
The worldwide extensive consumption of plastic materials, due to the low cost of production and their versatility, causes plastic pollution of the environment. It is one of the most difficult and challenging problems on the Earth, affecting the oceans, land, atmosphere and living matter. An emerging aspect is a microplastic pollution, which has become an intensively researched topic among scientists and organizations. Microplastics (MPs) according to the definition are granules, fibers, and fragments of micropollutants of the upper limit of the contractual size is 5 mm. They can have a primary or secondary origin. Primary microplastics are microscopic granules, or pellets purposedly produced for industrial applications. Secondary microplastics are usually generated by the fragmentation and degradation of plastic waste in the environment (e.g. mechanical abrasion, UV radiation, temperature changes, and biodegradation) or during the use of plastic consumption (Figure 2). Microplastics can impact ecosystems by providing water, delivery and air, and further affect human health by inhaling airborne particles or providing contaminated water and food. There can be identified three major harmful aspects of plastics and microplastics. Firstly, plastics exposed to environmental weathering can undergo degradation and break down from macro to smaller particles. MPs may be transported across the globe, as there were found in the Arctic snow or oceans deep. Second, MPs may adsorb and carry toxic chemical substances (persistent organic pollutants) which are harmful to humans and animals. And last but not least, plastics get to the food chain and air and reach humans through various routes. Many works in the literature describe the procedure of sampling, handling, identifying and quantifying MPs from different environments. Before to the actual analysis, MPs samples are often first fractionated by sieving, and solutions of various densities are also used to separate potential microplastics from other contaminants. Subsequently, the samples are purified in etching media to remove any organic contaminants. The MP identification and characterization procedure is a five-step process. It concerns the analysis of the size, shape, color and amount of plastic particles (expressed as the number or mass of particles per volume or mass of the sample) usually done by microscopy. The identification of the polymer is done by chemical characterization using usually spectroscopic (IR and Raman), chromatographic or thermal methods (Figure 4).
Rocznik
Strony
153--177
Opis fizyczny
Bibliogr. 121 poz., wykr.
Twórcy
  • Katedra Technologii Środowiska, Wydział Chemii Uniwersytetu Gdańskiego, Ul. Wita Stwosza 63, 80-308 Gdańsk
  • Katedra i Zakład Bromatologii, Wydział Farmaceutyczny, Gdański Uniwersytet Medyczny, 80-416 Gdańsk
  • Katedra i Zakład Bromatologii, Wydział Farmaceutyczny, Gdański Uniwersytet Medyczny, 80-416 Gdańsk
Bibliografia
  • 1. Plastics Europe, Plastics-the Facts 2022, 2022.
  • 2. R.C. Thompson, Y. Olsen, R.P. Mitchell, A. Davis, S.J. Rowland, A.W.G. John, D. Mcgonigle, A.E., Science, 2004, 304, 838.
  • 3. C. Arthur, J. Baker, H. Bamford, Proceedings of the International Research. Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris., NOAA Technical Memorandum NOS-OR&R-30, 2009.
  • 4. N.P. Ivleva, Chem. Rev., 2021, 121, 11886.
  • 5. W. de Wit, N. Bigaud, No plastic in nature: Assessing plastic ingestion from nature to people, Gland, Switzerland, 2019.
  • 6. J.-H. Kwon, J.-W. Kim, T.D. Pham, A. Tarafdar, S. Hong, S.-H. Chun, S.-H. Lee, D.-Y. Kang, J.-Y. Kim, S.-B. Kim, J. Jung, Int. J. Environ. Res. Public Health., 2020, 17(18), 6710.
  • 7. K. Kadac-Czapska, E. Knez, M. Grembecka, Crit. Rev. Food. Sci. Nutr., 2022, https://doi.org/10.1080/10408398.2022.2132212.
  • 8. P. Fan, H. Yu, B. Xi, W. Tan, Environ. Int., 2022, 163, 107244.
  • 9. V. Kinigopoulou, I. Pashalidis, D. Kalderis, I. Anastopoulos, J. Mol. Liq., 2022, 350, 118580.
  • 10. F. Gao, J. Li, C. Sun, L. Zhang, F. Jiang, W. Cao, L. Zheng, Mar. Pollut. Bull., 2019, 144, 61.
  • 11. M. Llorca, M. Ábalos, A. Vega-Herrera, M.A. Adrados, E. Abad, M. Farré, Toxics., 2020, 8 59.
  • 12. S.N. Akanyange, Y. Zhang, X. Zhao, G. Adom-Asamoah, A.R.A. Ature, C. Anning, C. Tianpeng, H. Zhao, X. Lyu, J.C. Crittenden, Sustain. Prod. Consum. 2022, 33, 113.
  • 13. S. Sharma, S. Chatterjee, Environ. Sci. Pollut. Res., 2017, 24, 21530.
  • 14. J. Boucher, D. Friot, Primary microplastics in the oceans: A global evaluation of sources, Gland, Switzerland, 2017.
  • 15. E. Garcia-Vazquez, C. Garcia-Ael, Sustain. Prod. Consum., 2021, 28,1076.
  • 16. M. Fiore, S. Fraterrigo Garofalo, A. Migliavacca, A. Mansutti, D. Fino, T. Tommasi, Water Air Soil Pollut. 2022, 233.
  • 17. R. Dris, J. Gasperi, C. Mirande, C. Mandin, M. Guerrouache, V. Langlois, B. Tassin, Environ. Pollut., 2017, 221, 453.
  • 18. W. Courtene-Jones, B. Quinn, S.F. Gary, A.O.M. Mogg, B.E. Narayanaswamy, Environ. Pollut., 2017, 231, 271.
  • 19. A. Cincinelli, C. Scopetani, D. Chelazzi, E. Lombardini, T. Martellini, A. Katsoyiannis, M.C. Fossi, S. Corsolini, Chemosphere., 2017, 175, 391.
  • 20. V. Godoy, M.A. Martín-Lara, M. Calero, G. Blázquez, Mar. Pollut. Bull., 2019, 139, 91.
  • 21. Q. Zhou, H. Zhang, C. Fu, Y. Zhou, Z. Dai, Y. Li, C. Tu, Y. Luo, 2018, 322, 201.
  • 22. M. González-Pleiter, C. Edo, Á. Aguilera, D. Viúdez-Moreiras, G. Pulido-Reyes, E. González-Toril, S. Osuna, G. de Diego-Castilla, F. Leganés, F. Fernández-Piñas, R. Rosal, Sci. Total Environ., 2021, 761, 143213.
  • 23. K. Szewc, B. Graca, A. Dołęga, Sci. Total Environ., 2021, 761, 143272.
  • 24. L. Ferrero, L. Scibetta, P. Markuszewski, M. Mazurkiewicz, V. Drozdowska, P. Makuch, P. Jutrzenka-Trzebiatowska, A. Zaleska-Medynska, S. Andò, F. Saliu, E.D. Nilsson, E. Bolzacchini, Sci. Total Environ., 2022, 824, 153709.
  • 25. M. Scheurer, M. Bigalke, Environ Sci Technol., 2018, 52, 3591.
  • 26. S. Gündoğdu, Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess., 2018, 35, 1006
  • 27. L.M. Hernandez, E.G. Xu, H.C.E. Larsson, R. Tahara, V.B. Maisuria, N. Tufenkji, Environ Sci Technol., 2019, 53, 12300.
  • 28. C. Sparks, A. Awe, J. Maneveld, Mar. Pollut .Bull., 2021, 166, 112186.
  • 29. D. Schymanski, C. Goldbeck, H.U. Humpf, P. Fürst, Water Res., 2018, 129, 154.
  • 30. K. Zhang, A.H. Hamidian, A. Tubić, Y. Zhang, J.K.H. Fang, C. Wu, P.K.S. Lam, Environ. Pollut., 2021, 274,116554.
  • 31. S. Manzoor, N. Naqash, G. Rashid, R. Singh, Mater. Today Proc., 2022, 56, 3254.
  • 32. J.P., N.A.R., S.P.S.M., G.A. v. , D.A.C., & R.-S.T. da Costa, J. Environ. Sci. Health, 2018, 53, 866.
  • 33. J.F. Rabek, Degradacja polimerów, Współczesna Wiedza o Polimerach, Wydawnictwo Naukowe PWN, Warszawa, 2009, 508.
  • 34. S., D.I.K., E.J., & K.T.P. Klein, Analysis, occurrence, and degradation of microplastics in the aqueous environment, Handbook of Environmental Chemistry, 2018, 51.
  • 35. K. Kadac-Czapska, E. Knez, M. Gierszewska, E. Olewnik-Kruszkowska, M. Grembecka, Materials, 2023, 16, 674.
  • 36. Y.Y. Hee, K. Weston, S. Suratman, Food Packag. Shelf Life, 2020, 32, 100826.
  • 37. B. Quinn, F. Murphy, C. Ewins, Anal. Methods., 2017, 9, 1491.
  • 38. F. Grunert, A. Wehmeier, A. Blume. Polymers, 2020, 12, 567.
  • 39. S. Onoja, H.A. Nel, M.A.-E. Abdallah, S. Harrad, Environ, Res., 2023, 203, 111830.
  • 40. Z. Wang, Y. Qin, W. Li, W. Yang, Q. Meng, J. Yang, Environ. Chem. Lett., 2019, 17, 1821.
  • 41. L.C. Woodall, A. Sanchez-Vidal, M. Canals, G.L.J. Paterson, R. Coppock, V. Sleight, A. Calafat, A.D. Rogers, B.E. Narayanaswamy, R.C. Thompson, R. Soc. Open Sci., 2014, 1, 140317.
  • 42. K.L. Ng, J.P. Board, Mar. Pollut. Bull., 2006, 52, 761.
  • 43. P.L. Corcoran, T. Norris, T. Ceccanese, M.J. Walzak, P.A. Helm, C.H. Marvin, Environ. Pollut., 2015, 204, 17.
  • 44. A. Stolte, S. Forster, G. Gerdts, H. Schubert, Mar. Pollut. Bull., 2015, 99, 216.
  • 45. GESAMP, Sources, fate and effects of microplastics in the marine environment: a global assessment, London, 2015.
  • 46. M. Claessens, L. van Cauwenberghe, M.B. Vandegehuchte, C.R. Janssen, Mar. Pollut. Bull., 2013, 70, 227.
  • 47. P.L. Corcoran, M.C. Biesinger, M. Grifi, Mar. Pollut. Bull., 2009, 58, 80.
  • 48. G. Liebezeit, F. Dubaish, Bull. Environ. Contam. Toxicol., 2012, 89, 213.
  • 49. H.K. Imhof, J. Schmid, R. Niessner, N.P. Ivleva, C. Laforsch, Limnol. Oceanogr. Methods., 2012, 10, 524.
  • 50. T. Maes, R. Jessop, N. Wellner, K. Haupt, A.G. Mayes, Sci. Rep., 2017, 7, 44501.
  • 51. M.T. Nuelle, J.H. Dekiff, D. Remy, E. Fries, Environ. Pollut., 2014, 184, 161.
  • 52. J.H. Dekiff, D. Remy, J. Klasmeier, E. Fries, Environ. Pollut., 2014, 186, 248.
  • 53. V. Hidalgo-Ruz, L. Gutow, R.C. Thompson, M. Thiel, Environ. Sci. Technol., 2012, 46, 3060.
  • 54. R.R. Hurley, A.L. Lusher, M. Olsen, L. Nizzetto, Environ. Sci. Technol, 2018, 52, 7409.
  • 55. C.L. Bai, L.Y. Liu, Y. bin Hu, E.Y. Zeng, Y. Guo, Sci. Total Environ., 2022, 806, 150263.
  • 56. M. Bergmann, L. Gutow, M. Klages, Marine Anthropogenic Litter, Springer, 2015.
  • 57. T.M. Karlsson, A.D. Vethaak, B.C. Almroth, F. Ariese, M. van Velzen, M. Hassellöv, H.A. Leslie, Mar. Pollut. Bull., 2017, 122, 403.
  • 58. S. Lievens, T. Slegers, M.A. Mees, W. Thielemans, G. Poma, A. Covaci, M. van der Borght, Environ. Pollut., 2022, 307, 119511.
  • 59. A. Dehaut, A.L. Cassone, L. Frère, L. Hermabessiere, C. Himber, E. Rinnert, G. Rivière, C. Lambert, P. Soudant, A. Huvet, G. Duflos, I. Paul-Pont, Environ. Pollut., 2016, 215, 223.
  • 60. J.-P.W. Desforges, M. Galbraith, P.S. Ross, Arch. Environ. Contam. Toxicol., 2015, 69, 320.
  • 61. M. Cole, H. Webb, P.K. Lindeque, E.S. Fileman, C. Halsband, T.S. Galloway, Sci. Rep., 2015, 4, 4528.
  • 62. A. Karami, A. Golieskardi, C.K. Choo, N. Romano, Y. bin Ho, B. Salamatinia, Sci. Total Environ., 2017, 578, 485.
  • 63. S. Kühn, B. van Werven, A. van Oyen, A. Meijboom, E.L. Bravo Rebolledo, J.A. van Franeker, Mar. Pollut. Bull., 2017, 115, 86.
  • 64. A.S. Tagg, M. Sapp, J.P. Harrison, J.J. Ojeda, Anal. Chem., 2015, 87, 6032.
  • 65. D. Thomas, B. Schütze, W.M. Heinze, Z. Steinmetz, Sustainability., 2020, 12, 9074.
  • 66. J.C. Prata, J.P. da Costa, A.C. Duarte, T. Rocha-Santos, TrAC Trends Anal. Chem., 2019, 110, 150.
  • 67. P. Liu, L. Qian, H. Wang, X. Zhan, K. Lu, C. Gu, S. Gao, Environ. Sc.i Technol., 2019, 53, 3579.
  • 68. I. Nabi, A.U.R. Bacha, L. Zhang, J. Clean. Prod., 2022, 337,130458.
  • 69. S.M. Mintenig, I. Int-Veen, M.G.J. Löder, S. Primpke, G. Gerdts, Water Res., 2017, 108, 365.
  • 70. C. Bretas Alvim, J.A. Mendoza-Roca, A. Bes-Piá, J. Environ. Manage., 2020, 255, 109739.
  • 71. I.A. Leitão, L. van Schaik, A.J.D. Ferreira, N. Alexandre, V. Geissen, Environ. Res., 2023, 218, 114961.
  • 72. A. Crew, I. Gregory-Eaves, A. Ricciardi, Environ. Pollut., 2020, 260, 113994.
  • 73. A.A. Sfriso, Y. Tomio, B. Rosso, A. Gambaro, A. Sfriso, F. Corami, E. Rastelli, C. Corinaldesi, M. Mistri, C. Munari, Environ. Int. 2020, 137, 105587.
  • 74. V. Godoy, J.C. Prata, G. Blázquez, A.I. Almendros, A.C. Duarte, T. Rocha-Santos, M. Calero, M.Á. Martín-Lara, Sci. Total. Environ., 2020, 746, 142023.
  • 75. E. Gaston, M. Woo, C. Steele, S. Sukumaran, S. Anderson, Appl. Spectrosc., 2020, 74, 1079.
  • 76. H. Maxwell S, F. Melinda K, G. Matthew, Environ. Sci. Technol., 2020, 54, 5580.
  • 77. A. Patchaiyappan, K. Dowarah, S. Zaki Ahmed, M. Prabakaran, S. Jayakumar, C. Thirunavukkarasu, S.P. Devipriya, Chemosphere., 2021, 269, 128757.
  • 78. A. Patchaiyappan, S.Z. Ahmed, K. Dowarah, S. Jayakumar, S.P. Devipriya, Mar. Pollut. Bull., 2020, 156, 111227.
  • 79. A. Patchaiyappan, S. ZakiAhmed, K. Dowarah, S.S. Khadanga, T. Singh, S. Jayakumar, C. Thirunavukkarasu, S.P. Devipriya, Mar. Pollut. Bull., 2021, 167, 112265.
  • 80. J.N. Hitchcock, Sci. Total Environ., 2020, 734,139436.
  • 81. Y. Mao, H. Li, W. Gu, G. Yang, Y. Liu, Q. He, Environ. Pollut., 2020, 265, 115033.
  • 82. B. el Hayany, L. el Fels, K. Quénéa, M.F. Dignac, C. Rumpel, V.K. Gupta, M. Hafidi, J. Environ. Manage., 2020, 275, 111249.
  • 83. J.C. Prata, A. Paço, V. Reis, J.P. da Costa, A.J.S. Fernandes, F.M. da Costa, A.C. Duarte, T. Rocha-Santos, Food Chem., 2020, 331, 127323.
  • 84. Y. Yao, M. Glamoclija, A. Murphy, Y. Gao, Environ. Res., 2022, 207, 112142.
  • 85. D. Kankanige, S. Babel, Sci. Total Environ., 2020, 717, 137232.
  • 86. D. Ragoobur, N.S. Amode, G.D. Somaroo, N. Nazurally, Reg. Stud. Mar. Sci., 2023, 57, 102766.
  • 87. T. Matjašič, N. Mori, I. Hostnik, O. Bajt, M. Kovač Viršek, Sci. Total Environ., 2023, 858, 160043.
  • 88. L. Ferrero, L. Scibetta, P. Markuszewski, M. Mazurkiewicz, V. Drozdowska, P. Makuch, P. Jutrzenka-Trzebiatowska, A. Zaleska-Medynska, S. Andò, F. Saliu, E.D. Nilsson, E. Bolzacchini, Sci. Total Environ., 2022, 824, 153709.
  • 89. S. Singh, S. Chakma, B. Alawa, M. Kalyanasundaram, V. Diwan, J. of Hazard. Mater. Adv., 2023, 9, 100225.
  • 90. J.C. Prata, V. Reis, J.T.V. Matos, J.P. da Costa, A.C. Duarte, T. Rocha-Santos, Sci. Total Environ., 2019, 690, 1277.
  • 91. G. Erni-Cassola, M.I. Gibson, R.C. Thompson, J.A. Christie-Oleza, Environ. Sci. Technol., 2017, 51, 13641.
  • 92. J.C. Prata, I.F. Sequeira, S.S. Monteiro, A.L.P. Silva, J.P. da Costa, P. Dias-Pereira, A.J.S. Fernandes, F.M. da Costa, A.C. Duarte, T. Rocha-Santos, Sci. Total Environ., 2021, 783, 147065.
  • 93. S.A. Mason, V.G. Welch, J. Neratko, Front Chem., 2018, 6, 407.
  • 94. M.D. Fernández Severini, N.S. Buzzi, A.D. Forero López, C. v. Colombo, G.L. Chatelain Sartor, G.N. Rimondino, D.M. Truchet, Mar. Pollut. Bull., 2020, 161, 111700.
  • 95. M. Shen, Z. Zeng, X. Wen, X. Ren, G. Zeng, Y. Zhang, R. Xiao, Environ. Sci. Pollut. Res., 2021, 28, 42313.
  • 96. N. Malygina, E. Mitrofanova, N. Kuryatnikova, R. Biryukov, D. Zolotov, D. Pershin, D. Chernykh, Water (Basel)., 2021, 13, 2287.
  • 97. Z.M. Wang, J. Wagner, S. Ghosal, G. Bedi, S. Wall, Sci. Total Environ., 2017, 603–604, 616.
  • 98. S. Chaudhari, P. Samnani, Mater. Today Proc., 2022, https://doi.org/10.1016/J.MATPR.2022.10.141.
  • 99. S. Kernchen, M.G.J. Löder, F. Fischer, D. Fischer, S.R. Moses, C. Georgi, A.C. Nölscher, A. Held, C. Laforsch, Sci. Total Environ., 2022, 818, 151812.
  • 100. N. Peez, T. Rinesch, J. Kolz, W. Imhof, Magn. Reason. Chem., 2022, 60, 172.
  • 101. N. Peez, W. Imhof, Analyst., 2020, 145, 5363.
  • 102. N. Peez, M.-C. Janiska, W. Imhof, Anal. Bioanal. Chem., 2019, 411, 823.
  • 103. N. Peez, J. Becker, S.M. Ehlers, M. Fritz, C.B. Fischer, J.H.E. Koop, C. Winkelmann, W. Imhof, Anal. Bioanal. Chem., 2019, 411, 7409.
  • 104. J. Lee, K.J. Chae, J. Hazard. Mater., 2021, 403, 124049.
  • 105. T. Ikenoue, R. Nakajima, A. Fujiwara, J. Onodera, M. Itoh, J. Toyoshima, E. Watanabe, A. Murata, S. Nishino, T. Kikuchi, Sci. Total Environ., 2023, 855, 159564.
  • 106. T. de J. Piñon-Colin, R. Rodriguez-Jimenez, M.A. Pastrana-Corral, E. Rogel-Hernandez, F.T. Wakida, Mar. Pollut. Bull., 2018, 131, 63.
  • 107. M. Gonzalez-Jauregui, M. Borges-Ramirez, J.A.L. Barão-Nóbrega, A. Escamilla, R. Dzul-Caamal, J. Rendón-von Osten, MethodsX.. 2019, 6, 2677. https://doi.org/10.1016/J.MEX.2019.11.013.
  • 108. K. Gunaalan, R. Almeda, C. Lorenz, A. Vianello, L. Iordachescu, K. Papacharalampos, C.M. Rohde Kiær, J. Vollertsen, T.G. Nielsen, Environ.Pollut., 2023, 318, 120853.
  • 109. J.C. Prata, Environ. Poll. 2018, 234,115.
  • 110. N.P. Ivleva, A.C. Wiesheu, R. Niessner, Angew. Chem. Int. Ed., 2017, 56, 1720.
  • 111. S. Anbumani, P. Kakkar, Environ. Sci. Pollut. Res., 2018, 25, 14373.
  • 112. J. la Nasa, G. Biale, D. Fabbri, F. Modugno, J. Anal. Appl. Pyrolysis. 2020, 149, 104841.
  • 113. W. Wang, J. Wang, TrAC Trends Anal. Chem., 2018, 108, 195.
  • 114. A. Wahl, C. le Juge, M. Davranche, H. el Hadri, B. Grassl, S. Reynaud, J. Gigault, Chemosphere., 2021, 262, 127784.
  • 115. C. Scherer, A. Weber, F. Stock, S. Vurusic, H. Egerci, C. Kochleus, N. Arendt, C. Foeldi, G. Dierkes, M. Wagner, N. Brennholt, G. Reifferscheid, Sci. Total Environ., 2020, 738,139866.
  • 116. G.T. Gimiliani, M. Fornari, M.M. Redígolo, J.O. Willian Vega Bustillos, D. Moledo de Souza Abessa, M.A. Faustino Pires, Case Stud. Chem. Environ. Eng., 2020, 2, 100020.
  • 117. F. Nilsen, K. David Hyrenbach, J. Fang, B. Jensen, Mar. Pollut. Bull., 2014, 87, 230.
  • 118. F. Ribeiro, E.D. Okoffo, J.W. O’Brien, S. Fraissinet-Tachet, S. O’Brien, M. Gallen, S. Samanipour, S. Kaserzon, J.F. Mueller, T. Galloway, K. v. Thomas, Environ. Sci. Technol., 2020, 54, 9408.
  • 119. C. Goedecke, D. Dittmann, P. Eisentraut, Y. Wiesner, B. Schartel, P. Klack, U. Braun, J. Anal. Appl. Pyrolysis. 2020, 152, 104961.
  • 120. S. Zhang, J. Wang, X. Liu, F. Qu, X. Wang, X. Wang, Y. Li, Y. Sun, TrAC Trends Anal. Chem., 2019, 111, 62.
  • 121. D. Sorolla-Rosario, J. Llorca-Porcel, M. Pérez-Martínez, D. Lozano-Castelló, A. Bueno-López, Talanta., 2023, 253, 123829.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a4aff81-3007-424b-a4d4-6d87d8b659c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.