PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Thickness of Graphene Coating on the Electromagnetical and Mechanical Properties of Double-Layer Coated Basalt Fibre Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ grubości powłoki grafenowej na właściwości elektromagnetyczne i mechaniczne dwuwarstwowo powlekanych tkanin z włókien bazaltowych
Języki publikacji
EN
Abstrakty
EN
A double-layer coated basalt fibre fabric was prepared using polyurethane as the matrix and applying coating technology to the basalt fibre fabric. The influence of the thickness of the graphene coating on the electromagnetic properties and mechanical properties of the double-layer coated basalt fibre fabric was studied. Results showed that when the thickness of the graphene coating was 2.0 mm, the polarising ability, loss ability and attenuating ability of the fabric with respect to electromagnetic waves were all the largest. Along with the increasing thicknesses of the graphene coating, the electromagnetic shielding effectiveness of the double-layer coated basalt fibre fabric also increased, then the shielding ability against electromagnetic waves became stronger.
PL
W pracy przygotowano dwuwarstwowo powlekaną tkaninę z włókna bazaltowego, stosując poliuretan jako matrycę i stosując technologię powlekania na tkaninę z włókien bazaltowych. Badano wpływ grubości powłoki grafenowej na właściwości elektromagnetyczne i mechaniczne dwuwarstwowo powlekanej tkaniny bazaltowej. Wyniki pokazały, że gdy grubość powłoki grafenowej wynosiła 2.0 mm, polaryzacja, zdolność do strat i zdolność tłumienia tkaniny w odniesieniu do fal elektromagnetycznych były największe. Wraz ze wzrostem grubości powłoki grafenowej wzrastała również skuteczność ekranowania elektromagnetycznego dwuwarstwowo powlekanej tkaniny bazaltowej z włókien bazaltowych, a następnie zdolność ekranowania przed falami elektromagnetycznymi stała się silniejsza.
Rocznik
Strony
69--74
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Loftex China Ltd., Binzhou 25660, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
  • Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin 300387, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
  • Loftex China Ltd., Binzhou 25660, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Loftex China Ltd., Binzhou 25660, China
autor
  • Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
  • Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
  • Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin 300387, China
Bibliografia
  • 1. Hao YH, Zhao L, Peng RY. Effects of Electromagnetic Radiation on Autophagy and Its Regulation. Biomedical and Environmental Sciences 2018; 31: 57-65.
  • 2. Liu YJ, Liu YC, Zhao XM. The Influence of Dopant on the Dielectric Properties of Flexible Polypyrrole Composites. Journal of the Textile Institute 2017; 108(7): 1280-1284.
  • 3. Liu YJ, Zhao XM. The Influence of Dopant Type and Dosage on the Dielectric Properties of Polyaniline/Nylon Composites. Journal of the Textile Institute 2017; 108(9): 1628-1633.
  • 4. Liu YJ, Liu BC, Zhao XM. The Influence of the Type and Concentration of Oxidants on the Dielectric Constant of the Polypyrrole-Coated Plain Woven Cotton Fabric. Journal of the Textile Institute 2018; 109(9): 1127-1132.
  • 5. Zhang KC, Zhang Q, Gao XB, Chen XF, Wang Y, Li WC, Wu JY. Effect of Absorbers’ Composition on the Microwave Absorbing Performance of Hollow Fe3O4 Nanoparticles Decorated CNTs/graphene/C composites. Journal of Alloys and Compounds 2018; 748, 706-716.
  • 6. Liu YJ, Liu YC, Zhao XM. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide Double Coated Polyester Woven Fabric. Journal of the Textile Institute 2018; 109: 106-112.
  • 7. Mohamadi M, Kowsari E, Haddadi-asl V, Yousefzadeh M. Fabrication, Characterization and Electromagnetic Wave Absorption Properties of Covalently Modified Reduced Graphene Oxide Based on Dinuclear Cobalt Complex. Composites Part B-engineering 2019; 162, 569-579.
  • 8. Song WL, Fan LZ, Hou ZL, Zhang KL, Ma YB, Cao MS. A Wearable Microwave Absorption Cloth. Journal of Materials Chemistry C 2017; 5: 2432-2441.
  • 9. Li JS, Xie YZ, Lu WB, Chou TW. Flexible Electromagnetic Wave Absorbing Composite Based on 3D Rgo-CNT-Fe3O4 Ternary Films. Carbon 2018; 129: 76-84.
  • 10. Rubinger CPL, Leyva ME. Ghz Permittivity of Carbon Black and Polyaniline with Styrene-Butadiene-Styrene Composites. Polymer Bulletin 2019; 76: 615-626.
  • 11. Simayee M, Montazer M. A Protective Polyester Fabric with Magnetic Properties Using Mixture of Carbonyl Iron and Nano Carbon Black Along with Aluminium Sputtering. Journal of Industrial Textiles 2018; 47: 674-685.
  • 12. Duan HJ, Zhu HX, Yang YQ, Hou TT, Zhao GZ, Liu YQ. Facile and Economical Fabrication of Conductive Polyamide 6 Composites with Segregated Expanded Graphite Networks for Efficient Electromagnetic Interference Shielding. Journal of Materials Science-Materials in Electronics 2018; 29: 1058-1064.
  • 13. Liu YJ, Zhao XM, Tuo X. Study of Graphite/Silicon Carbide Coating of Plain Woven Fabric for Electrical Megawatt Absorbing Properties. Journal of the Textile Institute, 2017; 108: 483-488.
  • 14. Sykam N, Rao GM. Lightweight Flexible Graphite Sheet for High-Performance Electromagnetic Interference Shielding.Materials Letters 2018; 233: 59-62.
  • 15. Nicoliche CYN, Costa GF, Gobbi AL, Shimizu FM, Lima RS. Pencil’s Graphite Cores for Pattern Recognition Applications. Chemical Communications (Cambridge, England), 2019; 55: 4623-4626.
  • 16. Liu YJ, Zhao XM, Tuo X. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide/Graphite Three -Layer Composite Coating Knitted Fabrics. Journal of the Textile Institute 2016; 107(4): 483-492.
  • 17. Wang X, Chen Y, Yu C, Ding J, Guo D, Deng CJ, Zhu HX. Preparation and Application of Zrc-Coated Flake Graphite for Al2O3-C Refractories. Journal of Alloys and Compounds 2019; 788: 739-747.
  • 18. Cui N, Sun L, Bagas L, Xiao KY, Xia JS. Geological Characteristics and Analysis of Known and Undiscovered Graphite Resources of China. Ore Geology Reviews 2017; 91, 1119-1129.
  • 19. Feng YW, Qu HJ, Yang CY, Lv S. Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen, China. Acta Geologica Sinica-English Edition 2015; 89: 1244-1263.
  • 20. Sattar T. Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Topics in Current Chemistry 2019; 377: 10.
  • 21. Kumar R, Dhawan SK, Singh HK, Kaur A. Charge Transport Mechanism of Thermally Reduced Graphene Oxide and their Fabrication for High Performance Shield Against Electromagnetic Pollution. Materials Chemistry and Physics 2016; 180: 413-421.
  • 22. Sambyal P, Dhawan SK, Gairola P, Chauhan SS, Gairola SP. Synergistic Effect of Polypyrrole/BST/RGO/Fe3O4 Composite for Enhanced Microwave Absorption and EMI Shielding In X-Band. Current Applied Physics 2018; 18: 611-618.
  • 23. Shahzad F, Yu S, Kumar P, Lee JW, Kim YH, Hong SM, Koo CM. Sulfur Doped Graphene/Polystyrene Nanocomposites for Electromagnetic Interference Shielding. Composite Structures 2015; 133: 1267-1275.
  • 24. Li BZ, Weng XD, Sun XD, Zhang Y, Lv XL, Gu GX. Facile Synthesis of Fe3O4/Reduced Graphene Oxide/Polyvinyl Pyrrolidone Ternary Composites and their Enhanced Microwave Absorbing Properties. Journal of Saudi Chemical Society 2018; 22: 979-984.
  • 25. Wang JY, Li ZQ, Fan GL, Pan HH, Chen ZX, Zhang D. Reinforcement with Graphene Nanosheets in Aluminum Matrix Composites. Scripta Materialia 2012; 66: 594-597.
  • 26. Wen B, Wang XX, Cao WQ, Shi HL, Lu MM, Wang G, Cao MS. Reduced Graphene Oxides: The Thinnest and Most Lightweight Materials with Highly Efficient Microwave Attenuation Performances of the Carbon World. Nanoscale 2014; 6: 5754-5761.
  • 27. Yan J, Huang Y, Chen XF, Wei C. Conducting Polymers-Nife2o4 Coated on Reduced Graphene Oxide Sheets as Electromagnetic (EM) Wave Absorption Materials. Synthetic Metals 2016; 221: 291-298.
  • 28. Li JS, Lu WB, Suhr J, Chen H, Xiao JQ, Chou TW. Superb Electromagnetic Wave-Absorbing Composites Based on Large-Scale Graphene and Carbon Nanotube Films. Scientific Reports 2017; 7: 2349.
  • 29. Renteria JD, Nika DL, Balandin AA. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage. Applied Sciences-Basel 2014; 4: 525-547.
  • 30. Liu YJ, Liu YC, Zhao XM. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide Double Coated Polyester Woven Fabric. Journal of the Textile Institute 2018; 109: 106-112.
  • 31. Liu Y, Zhao X. Experimental Studies on the Dielectric Behaviour of Polyester Woven Fabrics. FIBRES & TEXTILES in Eastern Europe 2016; 24, 3(117): 67-71. DOI: 10.5604/12303666.1196614.
  • 32. Liu YJ, Zhao XM, Tuo X. Study of Graphite/Silicon Carbide Coating of Plain Woven Fabric for Electrical Megawatt Absorbing Properties. Journal of the Textile Institute 2017; 108(4): 483-488.
  • 33. Liu YJ, Zhao XM, Tuo X. Preparation of Polypyrrole Coated Cotton Conductive Fabrics. Journal of the Textile Institute 2017; 108(5): 829-834.
  • 34. Liu YJ, Liu YC, Zhao XM. The Influence of Pyrrole Concentration on the Dielectric Properties of Polypyrrole Composite Material. The Journal of The Textile Institute 2017; 108(7): 1246-1249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a45eb64-fed8-4a01-a4c8-e63329fc28d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.