Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We review infinite divisibility and Lévy processes in Banach spaces and discuss the relationship with notions of type and cotype. The Lévy-Itô decomposition is described. Strong, weak and Pettis-style notions of stochastic integral are introduced and applied to construct generalised Ornstein-Uhlenbeck processes
Czasopismo
Rocznik
Tom
Strony
75--88
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Probability and Statistics Department,University of Sheffield, Hicks Building, Hounsfield Road,Sheffield, England, S3 7RH
Bibliografia
- [I] A. de Acos ta and J. D. Samur, Infinitely divisible probability measures and the converse Kolmogorov inequality in Banach space, Studia Math. 66 (1979), pp. 143-160.
- [2] S. A1beverio and B. Rüdiger, Stochastic integrals and the Lévy-Itô Decomposition Theorem on separable Banach spaces, Stochastic Anal. Appl. 23 (2005), pp. 217-253.
- [3] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2004.
- [4] D. Applebaum, Martingale-valued measures, Ornstein-Uhlenbeck processes with jumps and operator self-decomposability in Hilbert space, in: Séminaire de Probabilités 39, Lecture Notes in Math. No 1874, Springer, 2006, pp. 171-196.
- [5] A. Araujo and E. Giné, Type, cotype and Lévy measures in Banach spaces, Ann. Probab. 6 (1978), pp. 637-643.
- [6] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, 1980.
- [7] N. H. Bingham and R. Kiesel, Risk-Neutral Valuation, Pricing and Hedging of Financial Derivatives, Springer, London Ltd, 1998; 2nd edition: 2004.
- [8] Z. Breźniak and J. van Neerven, Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem, Studia Math. 143 (2000), pp. 43-74.
- [9] R. A. Carmona and M. R. Teranchi, Interest Rate Models: An Infinite Dimensional Stochastic Analysis Approach, Springer, 2006.
- [lo] A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics 21 (1987), pp. 251-286.
- [11] R. Con t and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, 2004.
- [12] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
- [13] E. Dettweiler, Banach space valued processes with independent increments and stochastic integration, in: Probability in Banach Spaces IV Proceedings Oberwolfach 1982, A. Beck and K. Jacobs (Eds.), Lecture Notes in Math. No 990, Springer, Berlin 1983, pp. 54-84.
- [I41 H. Heyer, Stuctural Aspects in the Theory of Probability, World Scientific, 2005.
- [15] Z. J. Jurek, An integral representation of operator-self-decomposable random variables, Bull. Acad. Pol. Sci. 30 (1982), pp. 385-393.
- [16] Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete 62 (1983), pp. 247-262.
- [17] C. I. Knoche, SPDEs in infinite dimensions with Poisson noise, C.R. Math. Acad. Sci. Paris (Strie I) 339 (2004), pp. 647-652.
- [18] C. I. Knoche, Existence, uniqueness and regularity w.r.t. the initial condition of mild solutions to SPDEs driven by Poisson noise, Universitat Bielefeld, preprint (http://www.physik.unibielefeld.de/bibos/starthtml) (2005).
- [19] A. Kyprianou, W. Schou tens and P. Wilm o t (Eds.), Exotic Option Pricing and Advanced Lévy Models, Wiley, 2005.
- [20] W. Linde, Probability in Banach Spaces - Stable and Infinitely Divisible Distributions, Wiley-Interscience, 1986.
- [21] J. van Neerven and L. Weis, Stochastic integration of functions with values in a Banach space, Studia Math. 166 (2005), pp. 131-170.
- [22] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), pp. 277-304.
- [23] J. Rosinski and Z. Suchanecki, On the space of vector-valued functions integrable with respect to the white noise, Colloq. Math. 43 (1980), pp. 183-201.
- [24] B. Rüdiger, Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces, Stoch. Stoch. Rep. 76 (2004), pp. 213-242.
- [25] W. Schouten s, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley, 2003.
- [26] L. Schwartz, Geometry and Probability in Banach Spaces, Lecture Notes in Math. No 852, Springer, Berlin-Heidelberg 1981.
- [27] S. Stolze, Stochastic equations in Hilbert space with Lévy noise and their applications in finance, Diplomarbeit, Universität Bielefeld (http://www.physik.uni-bielefeld.de/bibos/starthtml) (2005).
- [28] K. Urbanik, Lévy's probability measure on Banach spaces, Studia Math. 63 (1978), pp. 283-308.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a44de7f-01f5-4998-bc58-356fc0cc3605