PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lévy processes and stochastic integrals in Banach spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We review infinite divisibility and Lévy processes in Banach spaces and discuss the relationship with notions of type and cotype. The Lévy-Itô decomposition is described. Strong, weak and Pettis-style notions of stochastic integral are introduced and applied to construct generalised Ornstein-Uhlenbeck processes
Rocznik
Strony
75--88
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Probability and Statistics Department,University of Sheffield, Hicks Building, Hounsfield Road,Sheffield, England, S3 7RH
Bibliografia
  • [I] A. de Acos ta and J. D. Samur, Infinitely divisible probability measures and the converse Kolmogorov inequality in Banach space, Studia Math. 66 (1979), pp. 143-160.
  • [2] S. A1beverio and B. Rüdiger, Stochastic integrals and the Lévy-Itô Decomposition Theorem on separable Banach spaces, Stochastic Anal. Appl. 23 (2005), pp. 217-253.
  • [3] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2004.
  • [4] D. Applebaum, Martingale-valued measures, Ornstein-Uhlenbeck processes with jumps and operator self-decomposability in Hilbert space, in: Séminaire de Probabilités 39, Lecture Notes in Math. No 1874, Springer, 2006, pp. 171-196.
  • [5] A. Araujo and E. Giné, Type, cotype and Lévy measures in Banach spaces, Ann. Probab. 6 (1978), pp. 637-643.
  • [6] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, 1980.
  • [7] N. H. Bingham and R. Kiesel, Risk-Neutral Valuation, Pricing and Hedging of Financial Derivatives, Springer, London Ltd, 1998; 2nd edition: 2004.
  • [8] Z. Breźniak and J. van Neerven, Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem, Studia Math. 143 (2000), pp. 43-74.
  • [9] R. A. Carmona and M. R. Teranchi, Interest Rate Models: An Infinite Dimensional Stochastic Analysis Approach, Springer, 2006.
  • [lo] A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics 21 (1987), pp. 251-286.
  • [11] R. Con t and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, 2004.
  • [12] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
  • [13] E. Dettweiler, Banach space valued processes with independent increments and stochastic integration, in: Probability in Banach Spaces IV Proceedings Oberwolfach 1982, A. Beck and K. Jacobs (Eds.), Lecture Notes in Math. No 990, Springer, Berlin 1983, pp. 54-84.
  • [I41 H. Heyer, Stuctural Aspects in the Theory of Probability, World Scientific, 2005.
  • [15] Z. J. Jurek, An integral representation of operator-self-decomposable random variables, Bull. Acad. Pol. Sci. 30 (1982), pp. 385-393.
  • [16] Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete 62 (1983), pp. 247-262.
  • [17] C. I. Knoche, SPDEs in infinite dimensions with Poisson noise, C.R. Math. Acad. Sci. Paris (Strie I) 339 (2004), pp. 647-652.
  • [18] C. I. Knoche, Existence, uniqueness and regularity w.r.t. the initial condition of mild solutions to SPDEs driven by Poisson noise, Universitat Bielefeld, preprint (http://www.physik.unibielefeld.de/bibos/starthtml) (2005).
  • [19] A. Kyprianou, W. Schou tens and P. Wilm o t (Eds.), Exotic Option Pricing and Advanced Lévy Models, Wiley, 2005.
  • [20] W. Linde, Probability in Banach Spaces - Stable and Infinitely Divisible Distributions, Wiley-Interscience, 1986.
  • [21] J. van Neerven and L. Weis, Stochastic integration of functions with values in a Banach space, Studia Math. 166 (2005), pp. 131-170.
  • [22] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), pp. 277-304.
  • [23] J. Rosinski and Z. Suchanecki, On the space of vector-valued functions integrable with respect to the white noise, Colloq. Math. 43 (1980), pp. 183-201.
  • [24] B. Rüdiger, Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces, Stoch. Stoch. Rep. 76 (2004), pp. 213-242.
  • [25] W. Schouten s, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley, 2003.
  • [26] L. Schwartz, Geometry and Probability in Banach Spaces, Lecture Notes in Math. No 852, Springer, Berlin-Heidelberg 1981.
  • [27] S. Stolze, Stochastic equations in Hilbert space with Lévy noise and their applications in finance, Diplomarbeit, Universität Bielefeld (http://www.physik.uni-bielefeld.de/bibos/starthtml) (2005).
  • [28] K. Urbanik, Lévy's probability measure on Banach spaces, Studia Math. 63 (1978), pp. 283-308.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a44de7f-01f5-4998-bc58-356fc0cc3605
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.