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ABSTRACT  

The problem of considerable difference between the first- and second-order linear 

Nomoto models is undertaken, not well covered in literature so far. If the former approximates 

the latter (better one, of a sound hydrodynamic interpretation) for some reasons, its parameters 

can not be easily derived from the other one, except for some specific rare cases. For such an 

identification purpose, we can use a simulated zigzag response and the classic procedure pro-

posed by Nomoto in 1960. However, the first-order model thus developed yields somehow 

redefined constants against the original model, which lose their normal hydrodynamic (or kin-

ematic) sense. In other words, it is very sensitive to the manoeuvre type on input, being therein 

the zigzag test. Therefore, the model is allowed to be only used for simulating motions essen-

tially similar to the input zigzag. In other words, the identification procedure works like a blind 

curve-fitting and the first-order model (in contrast to second-order one) is inadequate for re-

flecting arbitrary manoeuvres, even for mild rudder as to be within 'linear' assumptions.  

This study examines systematically and in detail such an incompatibility of the first order 

model in that it presents the conversion charts from the standpoint of 10/10 zigzag test 

matching. One can receive higher or lower values for the parameters of first-order model, ver-

sus the second-order one, depending on the T3/T2 ratio of the latter model. 
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1. INTRODUCTION 

In the author's former research [Artyszuk, 2016a-b, 2017] some intriguing proper-

ties of the second-order ship steering (or yaw) dynamics were discovered and ex-

plored, especially concerning their reduction to first-order dynamics, sometimes 
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referred to as K-T model. They were almost completely ignored or underestimated in 

the original works of [Nomoto et al., 1957, [Nomoto, 1960] and further follow-ups by 

other researchers, where in the latter a sort of support or confirmation, more or less 

deliberate, could have been seen. The problem does not lie in inadequacy of the first-

order model for simulating the zigzag manoeuvre, that is rather correct but if being 

looked at in a semi-empirical way, i.e. more like curve-fitting. Many theoretical ap-

proximations, as existing in the literature, to the first-order model, independent of 

manoeuvre and based on various more or less disputable physical assumptions, are 

really confusing and call for caution.  

The controversy seems generally twofold. Firstly, it relates to the method of model 

reduction, i.e. how to transfer coefficients of the second-order model (K*-T1-T2-T3, 

mark '*' is here added to distinguish the second-order gain constant) to those of first-

order. Secondly, the very specific properties of second-order model are not well ap-

praised so far in the literature to enhance their wider usage. Generally, the gain con-

stant of first-order model is being made equal to the second-order equivalent (K=K*) 

with some exceptions as reported below. 

The aim of the present paper is to examine in detail the effect of various instances 

of the second-order model, especially in extreme domains of their four parameters, on 

the determined (through zigzag analysis) K and T parameters of the first-order approx-

imation. The mild and standard zigzag 10/10 is selected to keep the linear hydrody-

namics valid enough and to ensure a wider application or comparison/verification of 

the results. The investigations serve multiple-purpose: a) to provide at glance the right 

first-order model from hydrodynamic derivatives (through the second-order model), 

b) to explore the inherent relationships of such a conversion, c) to test the influence 

of the often neglected factor – rudder speed –  on the results. 

2. PAST RESEARCH AND PRACTICE 

Below, from a huge amount of specific literature, is reviewed a selective yet fun-

damental/representative set of references for the subject.  

[Fossen, 1994] shows through simulation the amplitude-phase frequency response 

of first- and second-order model for the benchmark Mariner class vessel if the 

[Nomoto et al., 1957] 'equivalency' formula T = T1+T2-T3 (and K=K*) is adopted. This 

was further reproduced in [Fossen, 2011], and such a good example of a ship was also 

commented in [Artyszuk, 2016b]. However, the cited book does not discuss the im-

portance of the found differences, especially in the plot of phase lag, when applied to 

the zigzag simulation. One can even get an impression that the mentioned formula is 
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general and applicable for arbitrary motion, although it is originally derived for the 

steady state phase of turning. According to experiences of the present author, based 

on multiple simulations and analytical studies, this phase is barely reached in the zig-

zag manoeuvre, so such reduction formulas should be more firmly revised in the en-

gineering practice and textbooks.  

[Dudziak, 1988] assumes T = T1 according to the actual relative magnitude of the 

three second-order time constants. This renders almost the same practical accuracy as 

in the previous, more 'sophisticated' case. However, the author does not seem to ap-

preciate enough the second-order model in transforming it to the above simpler case 

just by straightforward omitting the second derivative of yaw and disregarding the 

effect of rudder speed (as also leading to vanishing T3-component). 

On the other hand, [Lewis (ed.), 1989] presents a reduction approach to the first-

order model, with some vital consequences, that is rather wrongly assigned to Nomoto 

original works. It renders the model parameters absolutely different from [Nomoto et 

al., 1957], which is rather missed by the contributing authors, and likely losing a phys-

ical/hydrodynamic validity.  

Let us write the basic coupled linear equations of drift and yaw in dimensionless 

form: 
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where:  

ai, bi, ci, i{1,2} – hydrodynamic coefficients (constants);  

, 'z  – drift angle and dimensionless yaw velocity;  

  – rudder angle;  

s'  – dimensionless distance (or time).  

 

Eq. (1) resolves into a decoupled second-order linear Nomoto model: 
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where the four new parameters (time constants and gain) can be expressed by the 

former hydrodynamic coefficients that can be found in many references, also in 

[Artyszuk, 2016a]. 

The fully dimensionless second-order model, Eq. (2), is general in that it covers  

(is independent of) any advance speed and size/length of a ship. It involves evolution 
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of a kinematical variable  dimensionless yaw velocity (and thus heading as its inte-

gral, as being the control input)  with dimensionless distance s'. The latter term is  

to be more preferred than equivalent 'dimensionless time', if nautical purposes are of 

primary concern (as such is often the case), and means the travelled distance counted 

in ship's length units. Also, the three 'time' constants in Eq. (2) should be interpreted 

identically, although the traditional symbol 'T' is used for them. 

The first-order Nomoto model is defined by: 
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K
ds

d
T z
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,                                  …(3) 

[Lewis (ed.), 1989] stipulates very low and thus negligible coupling terms b1 and 

a2 in Eq. (1), which i.a. directly degenerates to Eq. (3) with the following worth noting: 
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One can also use the expressions for second-order constants [Artyszuk, 2016a], 

which, in addition to K in Eq. (4), returns the condition investigated in [Artyszuk, 

2016b], although different way – the equality/cancellation of T3 and T1 is obtained 

(instead of T2):  
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Partly, this is attributable to the usual, arbitrary sequence (forced by appropriate 

expressions) of both time constants T1 and T2, such that T1>T2. One should note that 

the second-order model is symmetrical against T1 and T2 which means we can replace 

both constants each other and keep Eq. (2) identical. For an exemplary ship investi-

gated in [Artyszuk, 2016a,b] we get: 

4.90* K ,   10.491 T ,   0.302 T ,   0.983 T ,       …(6) 

which by [Nomoto et al., 1957] turn into first-order constants:  

4.90K ,   9.81T ,                                   …(7) 

or by [Lewis (ed.), 1989] as follows (see details of Eq. (1) in [Artyszuk, 2016a]): 

0.54* K ,   1.611 T ,   0.352 T ,   1.613 T ,            …(8) 

0.54K ,   0.35T ,                                    …(9) 
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The difference between values of Eq. (7) and (9), and within the corresponding 

simulations of ship manoeuvres, especially zigzag tests, is remarkable. A closer look 

at the hydrodynamic assumptions themselves of [Lewis (ed.), 1989] enables to say 

they are against many experimental data. 

Except for [Lewis (ed.), 1989], the approximation methods discussed above, let us 

say theoretical ones, return K=K* and work well if T3 is very close to T2, where the 

second-order model converges to first-order. 

The other extreme approach goes far beyond the relationship with hydrodynamic 

(stability) derivatives of the background coupled linear equations of ship drift/sway 

and yaw, thus losing a direct link to Eq. (1). This can be called empirical or identifi-

cation-based method that uses actual ship motions. Mostly, it assumes the classical, 

very elegant integral form of [Nomoto, 1960], as is strictly connected with the zigzag 

manoeuvre. 

[Nomoto & Norrbin, 1969] state that linear range of motion, i.e. valid for the linear 

analysis of first-order, is in fact rarely encountered such that the so-called 'linear on 

the average' curve-fitting is actually exercised with Nomoto model and identification 

technique of 1960. And this is still very useful when determining various steering 

qualities of a ship. Both authors solely concentrate on the first-order model, robust 

one, but certainly we can naturally extend such concerns also to the second-order case. 

In the literature and research practice, this is sometimes referred to as the transition 

from local derivatives (mathematically and physically sound, geometrically repre-

sented by tangent) to global 'derivatives' (geometrically marked by chord). However, 

the cited reference focuses more on higher and different angles of rudder and heading 

deviation in the zigzag test than usual 10/10, when nonlinearity may increase. Nev-

ertheless, since in general we are unable to discriminate in the zigzag record not only 

between the linear and nonlinear response, but as well between just the first- and sec-

ond-order linear response, such an interpretation means 'linear averaging' of the sec-

ond-order linearity to the simpler one. 

As stated before, [Lewis (ed.), 1989] returns the first-order model (of yaw) with 

some coefficients of only the yaw sub-equation in Eq. (1). The little more rational 

approach is presented by [Motora, 1960], which explains the existence of first-order 

model by means of introducing to the ship coupled motions a certain fixed empirical 

pivot point. This provides a 'better' proportionality of drift and yaw than is obtainable 

with the former rough approximation, and  denotes keeping to some extent the contri-

bution of a2 (see Eq. (1)). However, also with this approach, as one may note, we 

cannot determine the K and T parameters from the coefficients of Eq. (1) or (2), if 

adequate simulation of the zigzag response is being aimed. For this purpose, one 

should still revert to their identification based on ship manoeuvring trials. 
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In the context of present research, [Motora, Fujino, 1969] made the biggest contri-

bution to resolve the problem of some incompatibility of first- and second-order linear 

models, if the reduction of [Nomoto et al., 1957] is attempted. This was exemplified 

on a ship similar to the mentioned Mariner class ship (in terms of T3 vs. T2). Although 

both the authors are starting with nonlinear models of stable and unstable ships, a good 

deal of the performed analysis, to our interest, regards just a linear stable ship and 

provides a basic, simple insight to the phenomenon. Moreover, the authors go much 

far and show the difference if various combinations of rudder and (switching) heading 

angles are exercised in zigzag test. They prove that both first- and second-order mod-

els asymptotically converge at zero rudder and finite heading angles – a  theoretical 

yet impractical case. Concentrating on another aspects (steering quality evaluation in 

various modes of control), they did not comment at all on the also shown standard 

case of 10/10 (or other equal angle cases), where almost twice less values of K and 

T are obtained if one applies the K-T identification of [Nomoto, 1960] to the simulated 

second-order linear response. For other unequal combinations of rudder/heading, they 

found the differences versus input much more exaggerated, also without appropriately 

highlighting the huge inadequacy of first-order model. The ITTC contribution of  

[Motora, Fujino, 1969], a rather unique piece of research, is unfairly in the shadow of 

other more affirmative references (research papers and textbooks) dealing with tran-

sition from second- to first-order models, which have been partly mentioned before.  

In summary, one must note that a derivation of the first-order model from the sec-

ond-order one, based on various theoretical assumptions and aimed at practical appli-

cation, surprisingly encounters significant difficulties. Both are quite different.  

The only way seems to (globally identify) curve-fit the first-order model to actual ship 

motion, best if the input motion (control) corresponds to the future operational area of 

the model. In particular, with the same first-order model parameters and within  

the range of low rudder angles (to involve linear dynamics), we are unable to accu-

rately simulate both steady turning and course-keeping or changing manoeuvres.  

We can have either one or another. This is a serious drawback of the model (being not 

adequate/universal) in view of real and usual ship behaviour, unless the ship hydro-

dynamics undergoes the exceptional mentioned condition T3=T2. The first-order 

model, irretrievably losing some essential information, seems not useful in the  

'reverse' engineering, when the other-way transition, towards second-order (and thus 

full mission model), is attempted. In the light of recent efforts [Artyszuk, 2018], and 

referring again to [Motora, Fujino, 1969], the best solution to the identification of 

second-order model is likely to use two or more different (in terms of rudder/heading 

combinations) zigzag records, as more or less supplemented with low rudder steady 

turning. 
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3. METHODOLOGY 

In an attempt to solve the stated problem of approximating the second-order gen-

eral model with first-order one, we may use analytical methods or numerical integra-

tion (simulation) methods. However, only the latter is of practical interest. Although 

both the linear models have their own known analytical solution, it is very compli-

cated due to a specific steering control involved in the zigzag. The control is in the 

form of alternating, trapezoidal rudder angle being switched by (with feedback from) 

heading angle, thus leading to a multiple-piecewise and multiple-component compli-

cated solution. For example, to reach the first overshoot angle, the zigzag consists of 

four rudder phases. The solution is illegible and not capable of easy use (e.g. to get a 

closed-form formula of models conversion, even using the simple method of 

[Nomoto, 1960]), also in that, it requires computation of the inverse function s'()  

( – heading). The latter, much more complicated in case of the second-order model, 

is actually a solution of an exponential equation, which can be completed only numer-

ically. That is why a direct numerical integration of Eq. (2) is preferred. Details of the 

ODE procedure implemented in hereafter computations are given in [Artyszuk, 2017]. 

The intended simulation experiment performed within this study consisted of sim-

ulating a second-order response with Eq. (2) and, based on this output, subsequent 

identification of K and T by [Nomoto, 1960] method. This means fitting a first-order 

response to the former one, but with regard to two curves – heading and (dimension-

less) yaw velocity. The adopted definitions of K and T are: 
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The above are based on the first overshoot angle ('OS1') and the second counter-

rudder order ('CR2', when heading assumes the first opposite/negative 10), accord-

ingly. With regard to K, the second and consecutive overshoot angles may also be 



JAROSŁAW ARTYSZUK 

194 ANNUAL OF NAVIGATION 

used, resulting in more or less different magnitude. Likewise, the constant T can be 

freely linked to other instances of heading as far as we know the dimensionless yaw 

velocity at those points.  

Eq. (11) is a minor modification of [Nomoto, 1960] formula, in which the yaw 

velocity was originally taken at the zero heading, and thus the last term in the numer-

ator (/18) did not appear. The undertaken action serves keeping the number of addi-

tional points in the zigzag analysis, and in the computation algorithm as well, to 

minimum. The counter-rudder points, as fundamental, have just been existing (being 

determined automatically) therein. In addition, the used point is close to the original 

(heading) zero-crossing point. However, searching for 'zero occurrence' is not prob-

lematic in the algorithm since it already takes place while looking for the overshoot 

angles, at which the yaw velocity comes to zero. 

In view of the rudder trapezoidal run, Eq. (12) can easily be solved analytically.  

In this context, ready-to-use formulas were published, e.g. in [Artyszuk, 2018].  

However, due to a wide range of the second-order model being planned and a risk of 

getting the overshoot at the rudder slope (not within the usual constant rudder phase),  

the numerical integration is performed. 

One shall notice in the above that, partly for simplicity of this somehow 'pilot' 

study, we turn with Eqs. (10-12) to the first half of heading cycle. 

The magnitude of coefficients in Eq. (2), of hydrodynamic sense, mainly depends 

on the shape geometry of a ship and her propulsion-steering equipment, in particular 

on the ratios of main dimensions within and between the hull, propeller, rudder. The 

other minor factor is the specific flow conditions corresponding to the Froude and/or 

Reynolds number. 

It is difficult to settle limits for the four coefficients   K*, T1, T2, T3   as wide as 

possible, to encompass all ship cases, yet finite enough to keep the extent of simula-

tion experiment practical. There is little information or such is being considerably 

scattered in literature. Due to variety of ship designs, also their assessment based on 

hydrodynamic derivatives in Eq. (1), through subcomponents thereof, published or 

computable with empirical methods, creates a challenge. The present author made a 

rough, fast theoretical evaluation based on formulas of [Artyszuk, 2016a] and feasible 

values of all the factors therein, and this resulted in rather wide ranges of the model 

parameters. To much extent, the parameters are even independent of each other. For 

example, if we assume values for the basic two coefficients, K* and T1, the other two 

factors responsible for the second-order linearity, expressed through the meaningful 

ratios, can be calculated by: 
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For a ship examined by [Artyszuk, 2016a] c2=1.54 was reported. Taking the con-

sidered therein structure for this coefficient and simulating the worst (most extreme), 

rather unlikely case, we would get c2=0.07 and 42, which means a spread 600 times.  

The other approach to estimating the boundaries of four model parameters can be 

based on IMO (International Maritime Organisation) manoeuvring standards for zig-

zag test 10/10, which regulate overshoot angles and initial turning ability index. 

However, only the latter (s'10 – dimensionless distance at the first change of heading 

10 or counter-rudder) would have rather definite effect on parameter limits, through 

K*/T1 control, see [Artyszuk, 2017], although this is partly obscured by T2 and T3.  

Therefore, somehow arbitrarily, mostly symmetrical and largely spaced values 

were chosen for K* and T1 (giving) around the reference value {K*,T1}={5,10}, see 

Eq. (6), to investigate basic relationship. This gives nearly 3x3 experimental matrix 

and is illustrated in Figure 1 with cross-references to subsequent figures with output 

data presentation. On the other hand, the following dense discrete points were selected 

for T2 and T3 due to their role in the second-order linearity: 

T2/T1 = 0.01, 0.02, 0.05, 0.1, 0.2, 0.4 (6 values), 

T3/T2 = 0, 0.2, 0.5, 1, 1.5, 2, 4, 6, 10 (9 values). 
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Figure 1. Simulation experimental design for the study  

(black/white dots – included in/excluded from paper's presentation). 

Source: Author. 

 

The rudder speed is uniformly and arbitrarily set to 23/L, where L is ship's length, 

or dimensionless 0.435 [-] (=rad/L), unless otherwise stated. 
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The numerical accuracy of the first-order approximation (with the identified K, T) 

for the given second-order input, in terms of the zigzag heading 'reverse' simulation, 

is to be left for future investigations. Both first- and second-order zigzag curves are 

practically/visually close to each other, however, at the present stage being of rela-

tively less interest.  

4. THE RESULTS 

Fig. 2 presents the situation when both K* and T1 are equal. The intersection point 

of all curves in this and subsequent Figs. 3-6 denotes the mentioned condition T3=T2, 

where the second-order model becomes first-order.  
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Figure 2. The K, T values for equal (K*=T1) 2nd-order input of 1-1 and 10-10. Source: Author. 
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However, since T2 is being settled in relation to T1, as fraction less than 1, if it is 

high enough and combined with relatively high T3/T2, one may get T3 suddenly higher 

than T1. This generally happens for T2/T1=0.2 or 0.4 while T3/T2>24, see the red and 

green lines in Fig. 2 and in later ones. It is also leading in extreme situations to  

a negative equivalent time constant by [Nomoto et al., 1957] definition and partly to 

a negative fitted constant T (see the top right sub-chart of this figure). Additionally, 

this denotes achieving meantime T1=T3 that works same way as the above directly 

considered state T3=T2. In such a case, where T1 and T3 'cancel' each other, T2 resumes 

the role of T1.  
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Figure 3. The K-T values for unequal (K*<T1) 2nd-order input of 1-5 and 1-10. Source: Author. 

 

Although both cases of T1 in Fig. 2, 1 or 10, are equally subject to relatively high 

T3 values, as inherent to the present simulation experimental setup, only for higher T1 

(or better, for higher K*) one always gets the positive T as of a stable ship. The latter 

condition just enables us to numerically simulate the zigzag with the first-order linear 

model. However, the negative T combined with positive K is surprisingly only specific 



JAROSŁAW ARTYSZUK 

198 ANNUAL OF NAVIGATION 

to this case K*=T1. This is not observable within the other instances of  K*-T1 as re-

ported further. One can also notice that the case of Fig. 1 is rather interesting since  

it contains a 'whole spectrum' of behaviour for K and T, in which they can vary differ-

ently for various T2/T1: stabilising and converging in K and spreading in T with  

increase of T3/T2, or vice versa. 

The identified K and T are generally lower than the input K* and T1 if T3/T2>1.  

This trends inverses for T3/T2>1. However, for K*-T1=1-1 one can practically read 

K=K* (=const). 

Moreover, for T3/T2<1 one can get very high values (in absolute magnitude)  

of K and T, which are not being seen in Figures 3 and 4. Examples of that are  

(for K*-T1=10-10): 

T2/T1=0.05, T3/T2=0.2  {K, T}= {388, 458}

T2/T1=0.05, T3/T2=0.5  {K, T}= {34, 38} 
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Figure 4. The K-T values for unequal (K*>T1) 2nd-order input of 5-1 and 10-1. Source: Author. 
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However, they appear in the case of Fig. 5 and in the cases, not shown in the 

paper, corresponding to K*-T1={5-5; 5-15; 10-5}. However, for both negative K and 

T values, as is always herein the case, the zigzag test is still well and adequately sim-

ulated.  

In Fig. 3 (K*/T1<<1, K*=const) one achieves moderate spread both in K and T, 

yet with clear first signs of stabilisation and convergence within T, as becoming much 

lower than T1.  
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Figure 5. The K-T values for reference case (K*-T1 = 5-10), with its zigzag parameters.  

Source: Author. 
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In Fig. 4 (K*/T1>>1, T1=const), a good stabilisation/convergence within K is actual, 

together with a wide spread for T. 

In both Figs. 3 and 4, the top and bottom paired K-T charts are similar in pattern to 

each other. Where appropriate, a scaling factor has to be only applied. 
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Figure 6. The relative K-T values for reference case (K*-T1 = 5-10), with its zigzag parame-

ters, for rudder speed 140/L. Source: Author. 
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Fig. 5 provides more data on the second-order zigzag response undergoing the in-

vestigated transformation to first-order, however, only for the reference case. We can 

notice therein a drop of the 'initial' distance s'10 with increasing T3/T2 or T2/T1 (condi-

tioned here by T3/T2>1). Both the overshoots angles, OS1 and OS2, have a similar pat-

tern to the chart of K. On the other hand, the image of s'10 is more resembling, though 

not exactly, the plot of T. 

Fig. 6 presents the change of particular quantities of Fig. 5, given here as ratio of 

the new to old (reference) value, when the rudder speed is increased more than 6 times, 

from 23/L to 140/L. Such quantities are marked therefore with '%'. Although both 

the overshoot angles are largely decreased with T3/T2, by abt. 65%, with little effect 

from T2/T1, the rudder speed generally affects s'10-distance to lesser degree, as well as 

the identified K and T constants. 

CONCLUSIONS 

The first-order model has weaknesses related to determination of its parameters 

from hydrodynamic derivatives, if considerably transient manoeuvres are to be simu-

lated. In the latter, such a model loses its adequacy, or exactly, in better words – the 

adequacy of its parameters. It sounds strange yet true. To rectify this problem, we 

shall use the first-order model only with its identifications based on actual motions. 

However, the model (its parameters) taken by identification, in the light of [Motora, 

Fujino, 1969] research or the present research on standard zigzag with various in-

stances of second-order model, is of little usefulness. This is because the application 

of such an identified first-order model cannot be extended towards arbitrary manoeu-

vres as should be the case with (universal) models, and shall be limited to similar 

manoeuvres as those used in the identification. The observed 'redefinition' of K*-T1 

(of second-order model) to arrive at K-T (of first-order model, approximate one) is 

essentially the effect of weighing of all the four parameters of second-order model, 

K*-T1-T2-T3, based on actual manoeuvre. We may even say that the latter two param-

eters, T2 and T3, more or less modify the role played by the primary parameters, K* 

and T1, if compared to the first-order model. 

Therefore, the reported K-T values elsewhere in literature shall be always supple-

mented with the input manoeuvre data. This is completely a new look and revision 
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proposal for the first-order linear model practice. In same way, although easily ob-

tainable, the K-T model may not be used for conversion (of its parameters) to second-

order models, unless it is considered in parallel with the input manoeuvre. However, 

such a conversion also poses itself a really difficult task in that it can only provide 

some limiting relationships imposed upon the four parameters of second-order model, 

often not resolving their ambiguity. However, at the present stage of research, they 

cannot be provided analytically, even for a single zigzag manoeuvre. The charts pre-

sented in the paper render some assistance in this context. The earlier mentioned po-

tential advantage of two or more different zigzag manoeuvres (in terms of 

rudder/heading), or other types of less nautically demanding manoeuvres, is going to 

be researched in the future. 

Although the presented research is based on second-order linear model, the same 

or even much worse problems – related to vulnerability of K-T identification to input 

manoeuvre – would happen if a real, more or less nonlinear zigzag trial is to be pro-

cessed. 

A second-order model, besides also some its drawbacks, shall be thus a basis of 

scientific and engineering interest. This is partly seen in the widely investigated so-

called nonlinear extensions of Nomoto models, also with zigzag tests, that is rarely 

seen in case of the first order model. However, there is little discussion in literature 

on the significance of all coefficients in such a nonlinear model, where the four pa-

rameters of the second-order linear model are playing a significant role in the overall 

performance of the model. 
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STRESZCZENIE 

Artykuł zawiera systematyczne wyniki identyfikacji liniowego modelu Nomoto pierw-

szego rzędu na podstawie symulowanej próby wężowej różnych wariantów modelu drugiego 

rzędu. W toku analizy stwierdzono ogólną nieadekwatność (strukturalną) modelu pierwszego 

rzędu do symulacji dowolnych manewrów, w przeciwieństwie do modelu drugiego rzędu, 

nawet w granicach liniowości dynamiki statku. Wyniki identyfikacji silnie bowiem zależą od 

rozpatrywanego manewru. 


