PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

LTCC glass-ceramics based on diopside/cordierite/Al2O3 for ultra-high frequency applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, three glass-ceramic composites based on a commercial SiO2-B2O3-Al2O3-CaO-MgO glass and cordierite, diopside or Al2O3 were used for preparation of green tapes and low temperature cofired ceramics (LTCC) substrates. The thermal behavior, phase composition, microstructure and dielectric properties of the fabricated glass-ceramics were characterized using a heating microscope, thermal analysis, X-ray diffraction, scanning electron microscopy and time domain spectroscopy. The applicability of the developed materials for LTCC technology was demonstrated by the preparation of test multilayer substrates. The glass-ceramic substrates exhibit advantageous properties for ultra-high frequency LTCC applications, including low sintering temperatures of 900-980°C, good compatibility with commercial Ag and AgPd conductive pastes and a low dielectric permittivity of 3.5-7 at 1 THz.
Czasopismo
Rocznik
Strony
190--201
Opis fizyczny
Bibliogr. 22 poz., il. kolor., fot., wykr.
Twórcy
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, ul. Zabłocie 39, 30-701 Kraków
Bibliografia
  • [1] Hu, C.; Liu, P.; Microwave dielectric properties of SiO2 ceramics with addition of Li2TiO3. Mater. Res. Bull. 2015, 65, 132-136. DOI: 10.1016/j.materresbull.2015.01.034
  • [2] Li, L.; Liu, C.H.; Zhu, J.Y.; Chen, X.M.; B2O3-modified fused silica microwave dielectric materials with ultra-low dielectric constant. J. Eur. Ceram. Soc. 2015, 35, 1799-1805. DOI: 10.1016/j.jeurceramsoc.2014.12.016
  • [3] Synkiewicz-Musialska, B.; Szwagierczak, D.; Kulawik, J.; Pałka, N.; Piasecki, P.; Structural, thermal and dielectric properties of low dielectric permittivity cordierite-mullite-glass substrates at terahertz frequencies. Materials 2021, 14, 4030. DOI: 10.3390/ma14144030
  • [4] Luo, X.; Tao, H.; Li, P.; Fu, Y; Zhou, H.; Properties of borosilicate glass/Al2O3 composites with different Al2O3 concentrations for LTCC applications. J. Mater. Sci.: Mater. Electron. 2020, 31, 14069-14077. DOI: 10.1007/s10854-020-03961-z
  • [5] Lou, W.; Song, K., Hussain, F.; Khesro, A.; Zhao, J.; Bafrooei, H.B.; Zhou, T.; Liu, B.; Mao, M.; Xu, K.; Taheri-nassaj, E.; Zhou, D.; Luo, S.; Sun, S.; Lin, H.; Wang, D.; Microwave dielectric properties of Mg1.8R0.2Al4Si5O18 (R = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn) cordierite ceramics and their application for 5G microstrip patch antenna. J. Eur. Ceram. Soc. 2022, 42, 2254-2260. DOI: 10.1016/j.jeurceramsoc.2021.12.050
  • [6] Ohsato, H.; Varghese, J.; Kan, A.; Kim, J.S.; Kagomiya, I.; Ogawa, H.; Sebastian, M.T.; Jantunen, H.; Volume crystallization and microwave dielectric properties of indialite/cordierite glass by TiO2 addition. Ceram. Int. 2021, 47, 2735-2742. DOI: 10.1016/j.ceramint.2020.09.126
  • [7] Wang, F.; Lai, Y.; Zhang, Q.; Yang, X.; Li, B.; Wu, C.; Su, H.; Jiang, G.; Improved microwave dielectric properties of (Mg0.5Ti0.5)3+ Co-substituted Mg2Al4Si5O18 cordierite ceramics. Solid State Sci. 2022, 132, 106989. DOI: 10.1016/j.solidstatesciences.2022.106989
  • [8] Lou, W.; Mao, M.; Song, K.; Xu, K.; Liu, B.; Li, W.; Yang, B.; Qi, Z.; Zhao, J.; Sun, S.; Lin, H.; Hu, Y.; Zhou, D.; Wang, D.; Reaney, I.M.; Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 2022, 42, 2820-2826. DOI: 10.1016/j.jeurceramsoc.2022.01.050
  • [9] Ebrahimi, F.; Nemati, A.; Banijamali, S.; Fabrication and microwave dielectric character-rization of cordierite/BZBS (Bi2O3-ZnO-B2O3-SiO2) glass composites for LTCC applications. J. Alloys Compd. 2021, 882, 160722. DOI: 10.1016/j.jallcom.2021.160722
  • [10] Wang, F.; Zhang, W.; Chen, X.; Mao, H.; Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite composites for LTCC application. Ceram. Int. 2019, 45, 7203-7209. DOI: 10.1016/j.ceramint.2018.12.228
  • [11] Chen, G.H.; Sintering, crystallization and properties of CaO doped cordierite-based glass-ceramics. J. Alloys Compd. 2008, 455, 298-302. DOI: 10.1016/j.jallcom.2007.01.036
  • [12] Mei, S.; Yang, J.; Ferreira, J.M.; Martins, R.; Optimization of parameters for aqueous tape-casting of cordierite-based glass ceramics by Taguchi method. Mater. Sci. Eng. A. 2002, 334, 11-18. DOI: 10.1016/S0921-5093(01)01773-7
  • [13] Synkiewicz, B.; Szwagierczak, D.; Kulawik, J.; Multilayer LTCC structures based on glass-cordierite layers with different porosity. Microelectron. Int. 2017, 34, 110-115. DOI: 10.1108/MI-12-2016-0084
  • [14] Feng, K.C.; Chou, C.C.; Tsao, C.Y.; Chu, L.W.; Raevski, I.P.; Chen, H.; A novel phase-controlling-sintering route for improvement of diopside-based microwave dielectric materials. Ceram. Inter. 2015, 41, 526-529. DOI: 10.1016/j.ceramint.2015.03.126
  • [15] Lai, Y.; Su, H.; Wang, G.; Tang, X.; Liang, X.; Huang, X.; Li, Y.; Zhang H., Ye, C.; Wang, X.R.; Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. J. Alloys Compd. 2019, 772, 40-48. DOI: 10.1016/j.jallcom.2018.09.059
  • [16] Huang, F.; Su, H.; Zhang, Q.; Wu, X.; Li, Y.; Tang, X.; Na-doped diopside microwave ceramics with dielectric properties influenced by the sintering, lattice vibration and chemical bond characteristics. J. Alloys Compd. 2022, 896, 162973. DOI: 10.1016/j.jallcom.2021.162973
  • [17] Huang, F.; Su, H.; Jing, Y.; Li, Y.; Lu, Q.; Tang, X.; Microwave dielectric properties of glass-free CaMg0.9-xLi0.2ZnxSi2O6 ceramics for LTCC applications. Ceram. Int. 2020, 46, 18308-18314. DOI: 10.1016/j.ceramint.2020.05.052
  • [18] Weng, Z.Z.; Song, C.X.; Xiong, Z.X.; Xue, H.; Sun, W.F.; Zhang, Y.; Yang, B.; Reece, M.J.; Yan, H.X.; Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition. Ceram. Int. 2019, 45, 13251-13256. DOI: 10.1016/j.ceramint.2019.04.011
  • [19] Synkiewicz-Musialska, B.; Szwagierczak, D.; Kulawik, J.; Pałka, N.; Bajurko, P.R.; Impact of additives and processing on microstructure and dielectric properties of wille-mite ceramics for LTCC terahertz applications, J. Eur. Ceram. Soc. 2020, 40, 362-370. DOI: 10.1016/j.jeurceramsoc.2019.10.005
  • [20] Kan, A.; Hirabayashi, R.; Takahashi, S.; Ogawa, H.; Low-temperature crystallization and microwave dielectric properties of forsterite generated in MgO-SiO2 system following LiF addition. Ceram. Int. 2023, 49, 9883-9892. DOI: 10.1016/j.ceramint.2022.11.163
  • [21] Zhou, J.; Towards rational design of low-temperature co-fired ceramic (LTCC) materials, J. Adv. Ceram. 2012, 1, 89-99. DOI: 10.1007/s40145-012-0011-3
  • [22] Ma, M.; Wang, Y.; Navarro-Cia, M.; Liu, F.; Zhang, F.; Liu, Z.; Li, Y.; Hanham, S.M.; Hao, Z.; The dielectric properties of some ceramic substrate materials at terahertz frequencies. J. Eur. Ceram. Soc. 2019, 39, 4424-4428. DOI: 10.1016/j.jeurceramsoc.2019.06.01
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a3b2800-07d1-4b51-9bba-5202c6d9d224
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.