Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Marine electronically controlled (ME) two-stroke diesel engines occupy the highest market share in newly-built ships and its fuel injection system is quite different and important. Fault diagnosis in the fuel injection system is crucial to ensure the power, economy and emission of ME diesel engines, so we introduce hierarchical multiscale fluctuation dispersion entropy (HMFDE) and a support matrix machine (SMM) to realise it. We also discuss the influence of parameter changes on the entropy calculation’s accuracy and efficiency. The system simulation model is established and verified by Amesim software, and then HMFDE is used to extract a matrix from the features of a high pressure signal in a common rail pipe, under four working conditions. Compared with vectorised HMFDE, the accuracy of fault diagnosis using SMM is nearly 3% higher than that using a support vector machine (SVM). Experiments also show that the proposed method is more accurate and stable when compared with hierarchical multiscale dispersion entropy (HMDE), hierarchical dispersion entropy (HDE), multiscale fluctuation dispersion entropy (MFDE), multiscale dispersion entropy (MDE) and multiscale sample entropy (MSE). Therefore, the proposed method is more suitable for the modelling data. This research provides a new direction for matrix learning applications in fault diagnosis in marine two-stroke diesel engines.
Czasopismo
Rocznik
Tom
Strony
98--111
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Shanghai Maritime University, China
autor
- Shanghai Maritime University, China
autor
- Shanghai Maritime University, China
Bibliografia
- 1. A. Alahmer, “Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine,” Energy Conversion and Management, vol. 73, pp. 361-369, 2013. doi:10.1016/j.enconman.2013.05.012.
- 2. C.W. Mohd, M.M. Noor and R. Mamat, “Biodiesel as alternative fuel for marine diesel engine applications: A review,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 127-142, 2018. doi:10.1016/j.rser.2018.05.031.
- 3. Z. Korczewski, “Energy and emission quality ranking of newly produced low-sulphur marine fuels,” Polish Maritime Research, Vol.21, No.3, pp. 77-87, 2022, doi:10.2478/ pomr-2022-0045.
- 4. J. Blasco, V. Duran-Grados, M. Hampel and J. Moreno, “Towards an integrated environmental risk assessment of emissions from ships’ propulsion systems,” Environment International, vol. 66, pp. 44-47, 2014, doi:10.1016/j. envint.2014.01.014.
- 5. K. Rudzki, P. Gomulka and A.T. Hoang, “Optimization model to manage ship fuel consumption and navigation time,” Polish Maritime Research, Vol.21, No.3, pp. 141-153, 2022, doi:10.2478/pomr-2022-0034.
- 6. J. Kowalski, “An experimental study of emission and combustion characteristics of marine diesel engine with fuel injector malfunctions,” Polish Maritime Research, Vol.21, No.1, pp. 77-84, 2016, doi:10.1515/pomr-2016-0011.
- 7. L. Liu, X. Chen, D. Liu, J. Du, and W. Li, “Combustion phase identification for closed-loop combustion control by resonance excitation in marine diesel engines,” Mechanical Systems and Signal Processing, vol. 163, pp. 108115, 2022, doi:10.1016/j.ymssp.2021.108115.
- 8. Y. Bai, L. Fan, X. Ma, H. Peng and E. Song, “Effect of injector parameters on the injection quantity of common rail injection system for diesel engines,” International Journal of Automotive Technology, vol. 17, no. 4, pp. 567- 579, 2016, doi:10.1007/s12239-016-0057-2.
- 9. V. Knežević, L. Stazić, J. Orović and Z. Pavin, “Optimisation of reliability and maintenance plan of the high-pressure fuel pump system on marine engine,” Polish Maritime Research, Vol.29, No.4, pp. 97-104, 2022, doi:10.2478/ pomr-2022-0047.
- 10. X. Wang, C. Liu, F. Bi, X. Bi and K. Shao, “Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension,” Mechanical Systems and Signal Processing, vol. 47, pp.581-597, 2013, doi:10.1016/j. ymssp.2013.07.009.
- 11. K. Tomi, H. Mika and H. Kalevi, “Analysis of common rail pressure signal of dual-fuel large industrial engine for identification of injection duration of pilot diesel injectors,” Fuel, vol. 216, pp. 1-9, 2018, doi:10.1016/j.fuel.2017.11.152.
- 12. Y. Yang, A. Ming, Y. Zhang and Y. Zhu, “Discriminative nonnegative matrix factorisation (DNMF) and its application to the fault diagnosis of diesel engine. Mechanical Systems and Signal Processing”, vol.95, pp.158-171, 2017, doi:10.1016/j. ymssp.2017.03.026.
- 13. M. Desbazeille, R.B. Randall, F. Guillet, M. Badaoui and C. Hoisnard, “Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft,” Mechanical Systems and Signal Processing, vol.24, no.5, pp.1529-1541, 2010, doi:10.1016/j.ymssp.2009.12.004.
- 14. Y. Liu, J. Zhang and L. Ma, “A fault diagnosis approach for diesel engines based on self-adaptive WVD, improved FCBF and PECOC-RVM,” Neurocomputing, vol.177, pp. 600-611, 2016, doi:10.1016/j.neucom.2015.11.074.
- 15. O. Cherednichenko, S. Serbin, M. Tkach, J. Kowalski and D.F. Chen,’Mathematical modelling of marine power plants with thermochemical fuel treatment,’ Polish Maritime Research, Vol.29, No.3, pp. 99-108, 2022, doi:10.2478/ pomr-2022-0030.
- 16. R. Varbanets, O. Shumylo, A. Marchenko, D. Minchev, V. Kyrnats, V. Zalozh, N. Aleksandrovska, R. Brusnyk and K. Volovyk, “Concept of vibroacoustic diagnostics of the fuel injection and electronic cylinder lubrication systems of marine diesel engines,” Polish Maritime Research, Vol.29, No.4, pp. 88-96, 2022, doi:10.2478/pomr-2022-0046.
- 17. R. Zhao, L.P. Xu, X.W. Su, S.Q. Feng, C.X. Li, Q.M. Tan and Z.C. Wang, ‘A numerical and experimental study of marine hydrogen-natural gas-diesel tri-fuel engines,’ Polish Maritime Research, Vol.27, No.4, pp.80-90, 2020, doi:10.2478/pomr-2020-0068.
- 18. C.G. Rodriguez, M.I. Lamas, J.D. Rodriguez and A. Abbas, “Analysis of the Pre-Injection System of a Marine Diesel Engine Through Multiple-Criteria Decision-Making and Artificial Neural Networks,” Polish Maritime Research, Vol. 28, No.4, pp. 88-96, 2021, doi:10.2478/pomr-2021-0051.
- 19. V.K. Gupta, Z. Zhang and Z. Sun, “Modelling and control of a novel pressure regulation mechanism for common rail fuel injection systems,” Applied Mathematical Modelling, vol. 35, pp. 3473–3483.2011, doi:10.1016/j.apm.2011.01.008.
- 20. H.P. Wang, D. Zheng and Y. Tian, “High pressure common rail injection system modelling and control,” ISA Transactions, vol.63, pp.265-273, 2016, doi:10.1016/j. isatra.2016.03.002.
- 21. Y. Li, X. Wang, Z. Liu, X. Liang and S. Si, “The entropy algorithm and its variants in the fault diagnosis of rotating machinery: a review,” IEEE Access, vol. 6, pp.66723–66741, 2018, doi:10.1109/ACCESS.2018.2873782.
- 22. X. Gao, X. Yan, P. Gao, X. Gao and S. Zhang, “Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks,” Artificial Intelligence in Medicine, vol. 102, 101711, 2020, doi:10.1016/j.artmed.2019.101711.
- 23. J. Zhang, J. Zhang, M. Zhong, J. Zheng and L.Yao, “A GOAMSVM based strategy to achieve high fault identification accuracy for rotating machinery under different load conditions,” Measurement, vol.163, 108067, 2020, doi:10.1016/j.measurement.2020.108067.
- 24. Z. Jinde, C. Junsheng and Y. Yang, “A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy,” Mechanism and Machine, vol.70, pp. 441–453, 2013, doi: 10.1016/j.mechmachtheory.2013.08.014.
- 25. R. Yan, Y. Liu and R.X. Gao, “Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines,” Mechanical Systems and Signal Processing, vol. 29, pp.474–484, 2012, doi:10.1016/j. ymssp.2011.11.022.
- 26. M. Costa, A.L. Goldberger and C.K. Peng “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol.89, no. 6, pp.705–708, 2002, doi:10.1103/PhysRevLett.89.068102.
- 27. Y. Li, K.E. Feng, X. Liang and M.J. Zuo, “A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved VoldKalman filter and multi-scale sample entropy,” Journal of Sound and Vibration, vol. 439, pp. 271–286, 2019, doi: 10.1016/j. jsv.2018.09.054.
- 28. Z. Wang, L. Yao, G. Chen and J. Ding, “Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals,” ISA Transactions, vol. 114, pp. 470- 484, 2021, doi:10.1016/j.isatra.2020.12.054.
- 29. Y. Jiang, C. K. Peng and Y. Xu, “Hierarchical entropy analysis for biological signals,” Journal of Computational & Applied Mathematics, vol. 236, pp. 728-742, 2011, doi: 10.1016/j.cam.2011.06.007.
- 30. Y.B. Li, X.H. Liang and Y. Wei, “A method based on refined composite multi-scale symbolic dynamic entropy and ISVM-BT for rotating machinery fault diagnosis,” Neurocomputing, vol. 315, pp. 246-260, 2018, doi:10.1016/j. neucom.2018.07.021.
- 31. H. Azami and J. Escudero, “Amplitude-and fluctuationbased dispersion entropy,” Entropy, vol. 20, no.3, 2018, doi:10.3390/e20030210.
- 32. X. Gan, H. Lu and G. Yang, “Fault diagnosis method for rolling bearings based on composite multiscale fluctuation dispersion entropy,” Entropy, vol. 21, no. 3, 2019, doi:10.3390/e21030290.
- 33. Y. Ke, C. Yao, E. Song, Q. Dong and L. Yang, “An early fault diagnosis method of common-rail injector based on improved CYCBD and hierarchical fluctuation dispersion entropy,” Digital Signal Processing, vol. 114, 2021, doi:10.1016/j.dsp.2021.103049.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a38999f-d388-4040-aba8-5998ad5d144f