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ABSTRACT

Marine electronically controlled (ME) two-stroke diesel engines occupy the highest market share in newly-built ships 
and its fuel injection system is quite different and important. Fault diagnosis in the fuel injection system is crucial 
to ensure the power, economy and emission of ME diesel engines, so we introduce hierarchical multiscale fluctuation 
dispersion entropy (HMFDE) and a support matrix machine (SMM) to realise it. We also discuss the influence of 
parameter changes on the entropy calculation’s accuracy and efficiency. The system simulation model is established 
and verified by Amesim software, and then HMFDE is used to extract a matrix from the features of a high pressure 
signal in a common rail pipe, under four working conditions. Compared with vectorised HMFDE, the accuracy of 
fault diagnosis using SMM is nearly 3% higher than that using a support vector machine (SVM). Experiments also 
show that the proposed method is more accurate and stable when compared with hierarchical multiscale dispersion 
entropy (HMDE), hierarchical dispersion entropy (HDE), multiscale fluctuation dispersion entropy (MFDE), multiscale 
dispersion entropy (MDE) and multiscale sample entropy (MSE). Therefore, the proposed method is more suitable 
for the modelling data. This research provides a new direction for matrix learning applications in fault diagnosis in 
marine two-stroke diesel engines.
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INTRODUCTION

With the characteristics of high thermal efficiency, high 
power, long service life, and easy maintenance, diesel engines 
play an important role in transportation, agriculture, industry, 
national defence and other fields [1]. According to relevant 
statistics, 90% of marine ships use diesel engines as their main 
propulsion units. However, marine diesel engines generally 
use low-quality heavy fuel oil [2,3], which will produce a large 
number of nitrogen oxides, sulphur oxides, carbon dioxide, 
particulate matter, volatile organic compounds, oily sewage 
and other hazards. These have become the main source of 
pollutants in the sea and coastal areas of ports, causing 
serious damage to the ecological environment and affecting 

people’s health [4]. The fuel injection system of a marine 
diesel engine has an important influence on its power, 
economy and emissions [5], such as improving combustion 
performance, reducing pollutant emissions and increasing 
diesel engine power [6]. The ideal fuel injection system has the 
characteristics of high injection pressure, flexible adjustment 
of the injection law and injection timing [7]. Low emissions, 
low fuel consumption, high reliability, large degree of control 
freedom and convenient operation and maintenance are the 
goals pursued by the continuous development of marine 
diesel engines. Because of their high control accuracy, great 
flexibility and complete functionality, electronic fuel injection 
systems have greatly improved the fuel economy of diesel 
engines and reduced pollutant emissions, which has become 
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a research hotspot in the diesel engine industry, both at home 
and abroad, and is an inevitable trend of the development of 
marine diesel engines [8]. 

At present, low-speed marine diesel engines mainly 
include marine electronically controlled (ME) diesel engines 
produced by MAN Company and RT-Flex diesel engines 
produced by the WinGD Corporation. According to statistics 
in Shanghai, China, ME type diesel engines have the highest 
market share, with an average of 56%, as shown in Table 1. The 
fuel injection system of an ME diesel engine is electronically 
controlled, with the characteristics of high injection pressure, 
flexible adjustment of injection law, injection timing and 
injection pressure. It is also the largest contributing factor 
to diesel engine failure [9]. Therefore, fault diagnosis in the 
fuel injection system of an ME two-stroke diesel engine is 
of great significance. 
Tab. 1. Statistics of types of diesel engines used on newly-built ships 

in Shanghai, China.

Years Number of newly 
built ships

Number of marine 
electronically 

controlled diesel 
engines

Number of dual 
fuel diesel engines

2019 26 17 1

2020 24 13 8

2021 41 21 12

The existing fault diagnosis method for diesel engines is 
widely based on the vibration signal. Wang et al. [10] measured 
the cylinder head surface vibration signals under three 
conditions of a diesel engine: normal state, injection advance 
angle leading and injection advance angle lagging, and used 
adaptive wavelet packets and EEMD fractal dimensions for 
fault diagnosis. Krogerus et al. [11] identified the injection 
duration of pilot diesel injectors by measuring the high 
pressure common rail fuel pipe pressure vibration signal of 
a dual fuel diesel engine. Yang et al. [12] collected the vibration 
signals of a diesel engine surface under seven common valve 
faults, and adopted a combination of the discriminative non-
negative matrix factorisation (DNMF) and the KNN classifier. 
Desbazeille et al. [13] analysed the crankshafts’ angular speed 
variations to monitor the working condition of a large diesel 
engine. Liu et al. [14] proposed a novel fault diagnosis method 
for diesel engines based on self-adaptive WVD, improved 
FCBF and a relevance vector machine (RVM); the results 
demonstrated that the method can effectively extract the 
relevant fault features and can accurately identify the fault 
types. From the above research, we see that most of these 
experiments were carried out in a laboratory environment, 
which lacks interference, and the vibration signal is more 
susceptible to noise pollution. The working environment is 
harsher, especially for a marine two-stroke diesel engine which 
generates a higher possibility of interference from vibration 
data. Cherednichenko et al. [15] undertook the physical 
modelling of thermochemical fuel treatment processes. 
Varbanets et al. [16] pointed out that mathematical simulation 
of the engine was helpful in identifying malfunctions and 

predicting the effects of a malfunction on the performance 
of the engine. Zhao et al. [17] used numerical simulations 
and experimental tests to evaluate the effects of different 
hydrogen ratios on the combustion and emissions of diesel 
engines. In order to obtain more abundant diesel engine data, 
Rodriguez et al. [18] obtained diesel engine data through 
a computational fluid dynamics model under several pre-
injection patterns. Gupta et al. [19] presented the modelling 
and control of a novel pressure regulation mechanism for the 
common rail fuel injection system of internal combustion 
engines and validated it by using Amesim software. Some 
researchers also used the Amesim software to build a fuel 
injector model and then conducted relevant fault diagnosis 
research based on the model [20]. Therefore, this paper used 
Amesim software to model the fuel system and validate it 
through real experiments. This model was then used to 
simulate the three common faults (single electronic valve 
failure, double electronic valve failure and accumulator 
leakage fault) in the fuel system, so as to provide enough 
fault sample signals for fault diagnosis.

Commonly, the pressure signals in the fuel injection system 
are non-liner, non-stationary and complex and entropy is 
one of the non-stationary dynamics methods which can be 
used effectively in this field [21]. Examples are approximate 
entropy (AE) [22], sample entropy (SE) [23], fuzzy entropy 
(FE) [24] and permutation entropy (PE) [25]. These entropies 
are used to quantify the irregularity of signals on a single 
time scale, but cannot analyse information on multiple time 
scales. In order to overcome this limitation, these entropy 
algorithms are combined with coarse-grained multi-scale 
methods and fine composite multi-scale methods. For 
example, Costa [26] proposed mutiscale entropy (MSE) to 
measure the complexity of time series at different scales. 
Li [27] proposed impoved multiscale entropy to detect train 
axle bearing faults. Wang et al. [28] proposed a novel fault 
diagnosis method based on generalised composite multiscale 
weighted permutation entropy, supervised Isomap, and 
a marine predators algorithm-based support vector machine, 
to extract the sensitive features of rolling bearings and carry 
out fault diagnosis. However, MSE only considers the low 
frequency component of the original sequence and ignores 
the high frequency component. For the time series with 
a rich fault information distribution, MSE cannot meet the 
requirements. In order to extract fault information from 
the high frequency components in the signal, Jiang et al. 
[29] introduced the concept of hierarchical entropy (HE). 
Compared with MSE, HE considers both the low frequency 
components and high frequency components of the signal, 
which can provide more comprehensive and accurate time 
pattern information.

Dispersion entropy (DE) overcomes the shortcomings of 
AE, SE, FE, and PE, with fast calculation speeds, high stability, 
and greatly improved anti-noise ability. The literature [30] 
applied multiscale dispersion entropy (MDE) and refined 
composite multi-scale dispersion entropy (RCMDE) for 
the fault diagnosis of rolling bearings, sliding bearings, 
gearboxes and other rotating machinery, and has achieved 
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good diagnostic results. However, DE only considers the 
absoluteness of the amplitude and does not consider the 
relativity, so it cannot evaluate the fluctuation of the signal. 
Azami et al. [31] proposed fluctuation-based dispersion 
entropy (FDE), which is generalised to multiscale fluctuation-
based dispersion entropy (MFDE) and refined composite 
multi-scale fluctuation dispersion entropy (RCMFDE). FDE 
takes into account the volatility of the time series and is more 
robust to baseline drift. When under the same parameters, 
the calculation speed is faster, due to the reduction of all 
possible dispersion modes [32]. Therefore, the paper presents 
hierarchical multiscale fluctuation-based dispersion entropy 
(HMFDE) as a new fault feature extraction, which combines 
the advantages of HE and MFDE. The feature extracted by 
HMFDE, as the matrix representation of the original signal, 
can evaluate the irregularity of the measured pressure signal 
for each hierarchical layer and at each scale. Compared 
with the existing fault extraction methods, HMFDE has 
the following three main advantages. Firstly, HMFDE can 
extract deeper information in the measured signals, compared 
with HMDE and MFDE. Secondly, the HMFDE method, 
without any dimension reduction process, can avoid the loss 
of structural information. Thirdly, the presented method can 
be more widely applied to the ME diesel engine, compared 
to [33].

The paper investigates the effect of different parameter 
values on the ability of HMFDE to quantify the uncertainty 
of signals; HMFDE is then used to extract the matrix features 
of a fuel injection system. Lastly, a support matrix machine 
(SMM) is used as a classifier to realise fault diagnosis. The 
rest of the paper is organised as follows: Section 2 presents 
the HMFDE method, Section 3 determines the optimal 
parameters of HMFDE, Section 4 illustrates the detailed 
fault identification steps of the fuel injection system of an 
ME diesel engine, Section 5 compares the performance of 
different methods in fuel injection system fault diagnosis 
and the conclusions are presented in Section 6.

HIERARCHICAL MULTISCALE 
FLUCTUATION DISPERSION ENTROPY

In this section, HMFDE is proposed to extract deeper 
information from the signals, as illustrated in Fig. 1. The 
proposed method mainly consists of three phases: HE is used 
to decompose the signal into different layers, MSE is then used 
to decompose every layer at different scales and, finally, FDE 
is used to calculate the entropy of each node. The detailed 
calculation process is described below.

FLUCTUATION DISPERSION ENTROPY

For the given time series   with length 
N, the detailed calculation steps of the FDE algorithm are 
as follows:

Fig.1. HMFDE flow chart

(1) Xi(i=1~N) is mapped to integer classes ranging from 
1 to C by Eq. (1) and (2).

 (1)

 (2)

where u is expectation, σ is variance, c is an integer and R is 
the rounding function.

(2)The time series Zj can be reconstructed according to the 
embedding dimension m and delay parameter d.

, j=1,2,..., N-(m-1)*d (3)

(3) Zj is transformed to a dispersion mode  and
 ,  ,..., .

(4) The probability of each pattern can be calculated by:

  (4)

(5)The FDE can be calculated by: 

(5)
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FDE takes into account the difference between adjacent 
elements of the dispersion mode, i.e. the dispersion mode 
based on fluctuation. In this algorithm, we get a pattern vector 
with dimension m-1, and each element of the pattern vector 
ranges from -c+1 to c-1. Therefore, there are (2c-1)m-1 wave-
based dispersion patterns. When all dispersion patterns have 
equal probability values, the entropy value is the maximum, 
which is ln[(2c-1)m-1]. At this time, the signal is completely 
random.

HIERARCHICAL MULTISCALE DECOMPOSITION

For the given time series X, the hierarchical decomposition 
process is illustrated in Fig. 2. The detailed calculation steps 
are as follows:

Fig. 2. Hierarchical decomposition process

(1) For a signal X with a length N, define an average 
operator Q0 and Q1 using Eq. (6) and (7); Q0 represents the 
low frequency of X and Qz represents the high frequency of X.

 ,  j=0,1,..., 2n-1 (6)

,  j=0,1,..., 2n-1 (7)

(2) In order to describe the hierarchical analysis of the 
signals, the operator (j=0 or 1) at the hierarchical layer k, 
is written as: 

12 2
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j

Q (8)

(3) To obtain the hierarchical components Xk,e of each layer 
in the hierarchical decomposition process, the operator k

jQ  is 
used repeatedly. At the same time, define the one-dimensional 
vector [[γ1, γ2,∙∙∙ , γn]  {0, 1}} and integer

 (9)

(4) Based on vector [γ1, γ2,∙∙∙ , γn], the hierarchical component 
of the e-th node of the k-th layer can be calculated by

  (10)

(6) For each , the coarse-gain sequence can be 
calculated by

, (11)

(6) The FDE value of  can be calculated by Eq. (1)-(5) 
and the HMFDE value can be calculated by  

HMFDE( )=  (12) 

PARAMETERS OF HMFDE

According to the concept of HMFDE, there are six key 
parameters which need to be set in advance: the length of the 
time series N, embedding dimension m, category c, delay time 
d, hierarchical layer k and scale factor τ. For the hierarchical 
layer k, if it is too large, it will lead to too few decomposition 
data points and the calculation efficiency will become low. 
If the value of k is too small, the frequency band division of 
the original data will not be detailed enough to fully obtain 
the frequency band information of the data. According to the 
relevant literature, the value of hierarchical layer k is set to 
3, the scale factor is set to 10 and the delay time is set to 1. In 
order to evaluate the influence of the remaining parameters, 
we selected 30 groups white Gaussian noise and 1/f noise as 
the simulation data. By calculating HMFDE for each group 
data, the coefficient of variation (CV), consumption time (CT) 
and Euclidean distance (ED) are used as evaluation indexes 
of HMFDE stability, and the expressions for CV and ED are 
shown in Eq. (13) and (14).

 (13)

 (14)

where H1(i,j) and H2(i,j) denote two different HMFDE values

PARAMETER OF DATA LENGTH N

By using the aforementioned method, the matrix 
characteristics can be extracted and the relevant results are 
presented in Fig. 3. It can be seen that, with the increase 
of scale factor, the HMFDE values tend to decrease, which 
means that the complexity is reduced and is consistent with 
the actual situation. From Table 2, Table 3 and Table 4, we 
can conclude that the data length has little influence on the 
stability of HMFDE. However, with an increase in data length, 
the average time consumed will increase significantly. After 
much consideration, a data length of 2048 was chosen.
Tab. 2. Time consumed with different data lengths

Data length 512 1024 2048 4096

White Gaussian noise 0.0330 0.0824 0.2449 0.8063

1/f noise 0.0320 0.0856 0.2499 0.7743
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Tab. 3. CV value with different data lengths

Data length 512 1024 2048 4096

White Gaussian noise 0.0325 0.0376 0.0232 0.0214

1/f noise 0.0523 0.0568 0.0571 0.0608

Tab. 4. ED value with different data lengths

Data length 512 1024 2048 4096

ED 1.5804 1.4880 1.7922 2.0630

 

(a) White Gaussian noise with 512 points (b) 1/f noise with 512 points

 
(c) White Gaussian noise with 1024 points (d) 1/f noise with 1024 points

 

(e) White Gaussian noise with 2048 points (f) 1/f noise with 2048 points

 
(g) White Gaussian noise with 4096 points (h) 1/f noise with 4096points

Fig. 3. HMFDE value with different data lengths 
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PARAMETER OF EMBEDDING DIMENSION M

If the embedding dimension is too small, the dynamic 
transformation cannot be observed, but if the dimension is 
too large, a small change cannot be observed. The range of 
parameters selected in the research was 2-5. From Fig. 4, we 
can see that, with the increasing embedding dimension, the 
HMFDE value increases, which means that the complexity is 
increasing. From Table 5 to Table 7, the time consumption is 
longer when m is larger than 3; the ED value is at its largest 
when m is 3, and the CV value is basically the same. So, after 
comprehensive consideration, an embedding dimension of 3 
was chosen in the research.

Tab. 5. Time consumed with different embedding (s)

Embedding 2 3 4 5

White Gaussian noise 0.2414 0.2787 0.3987 1.6804

1/f noise 0.2424 0.2574 0.3903 1.6618

Tab. 6. CV value with different embedding

Embedding 2 3 4 5

White Gaussian noise 0.0232 0.0215 0.0198 0.0125

1/f noise 0.0671 0.0670 0.0624 0.0450

Tab. 7. ED value with different embedding

Embedding 2 3 4 5

ED 1.7922 2.9232 2.8303 1.9596

 
(a) White Gaussian noise with m=2 (b) 1/f noise with m=2

 
(c) White Gaussian noise with m=3 (d) 1/f noise with m=3

 

(e) White Gaussian noise with m=4 (f) 1/f noise with m=4
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PARAMETER OF CATEGORY C

The parameter c is used to balance the entropy value and 
signal information loss. If the c value is too small, some 
detailed information may be lost, whereas, if the c value is too 

large, some subtle amplitude differences may lead to different 
classifications. Here, we discuss the influence with c ranging 
from 4-7. Fig. 5, Table 8, Table 9 and Table 10 show that, when 
c is 6, the HMFDE value is more stable and easier to identify. 
So, category c was chosen as 6 in the research.

 
(g) White Gaussian noise with m=5 (h) 1/f noise with m=5

Fig. 4. HMFDE value with different embedding m.

 
(a) White Gaussian noise with c=4 (b) 1/f noise with c=4

 
(c) White Gaussian noise with c=5 (d) 1/f noise with c=5
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Tab. 8. Time consumed with different category (s)

Category 4 5 6 7

White Gaussian noise 0.2456 0.2547 0.2478 0.2560

1/f noise 0.2662 0.2564 0.2494 0.2544

Tab. 9. CV value with different category

Category 4 5 6 7

White Gaussian noise 0.0254 0.0265 0.0215 0.0143

1/f noise 0.0812 0.0704 0.0680 0.0662

Tab. 10. ED value with different category

Category 2 3 4 5

ED 2.9730 2.9553 2.9632 2.9601

EXPERIMENTAL STUDY

The experimental setup was a two-stroke marine diesel 
engine in Shanghai Maritime University, which was 
manufactured by the Diesel Engine Company of MAN 
B&W 6S35ME-B9. The main parameters of the engine are 
listed in Table 11. The fuel injection system of the engine 
mainly consisted of a hydraulic power unit (HPU), a hydraulic 
cylinder unit (HCU) and an engine control system (ECS). 
The HPU mainly comprises a filter and hydraulic pumps; 
its main function being to provide sufficient power for fuel 
injection and exhaust valve action. The HCU mainly consisted 
of a fuel injection valve activation (FIVA), an accumulator, 
a fuel supercharger and an exhaust valve driver; the main 
function of it is to realise the fuel injection and exhaust 

valve action of each cylinder. The ECS is the control core 
of the whole diesel engine, which operates it efficiently and 
continuously. 
Tab. 11. Main technical parameters of the marine diesel engine

Number Parameter Value

1 Number of strokes 2

2 Firing sequence 1-5-3-4-2-6

3 Rated power 3570 kW

4 Rated speed 140 r/min

5 Compression ratio 21

6 Cylinder bore/Stroke 350 mm/1550 mm

7 Connecting rod length 1550 mm

8 Intake mode Supercharging cooling

9 Injection timing After top dead center (TDC) 
2-4°CA

Because it is dangerous and expensive to carry out fault 
testing on a real marine two-stroke diesel engine, Amesim 
software was selected to simulate performance. The details of 
the model can be found in the literature [11-13]. In order to 
show the picture more clearly, only two fuel injectors are shown 
here. Fig. 6 shows two super components being used, instead 
of an axial piston pump. In fact, by using a verified simulation 
model, we can further analyse and understand the performance 
of the fuel injection system, comprehensively. First of all, the 
experiments were carried out on diesel engines with working 
loads of 100% and the tests lasted 150 minutes. As the fuel oil 
consumption was more important to guarantee the working 

 
(e) White Gaussian noise with c=6 (f) 1/f noise with c=6

 

(g) White Gaussian noise with c=7 (h) 1/f noise with c=7

Fig. 5. HMFDE value with different category c
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condition of the whole engine, it was calculated every 30 
minutes; then this parameter was selected as the simulation 
model input boundary. The comparison between the simulation 
and the experimental results is shown in Fig.7. It can be seen 
that the simulation results almost share the same trend as the 
experimental results. The MSE (mean-square error) between 
the simulation and the experimental data is only 1.5103, which 
proves that the established model can accurately predict the 
cyclical fuel injection characteristics of the system.  

In order to validate the effectiveness of the fault diagnosis 
algorithm, three common diesel engine faults were simulated 
on the simulation model, under a 100% working load 
condition (including a stuck solenoid valve, power failure 
of a solenoid valve and leakage from the accumulator). The 

first fault is usually caused by carbon deposition on the valve 
core, which leads to the reduction of the injector needle 
valve lift. Here, the valve core lift was reduced by 20%. 
The second fault is usually caused by the ship’s vibration, 
which will cause the solenoid valve coil to fall off; then the 
corresponding cylinder of the diesel engine misfires. The 
third fault is usually caused by a lack of maintenance on the 
accumulator during long-term operations, which reduces 
the inhibition of the reflected wave in the fuel injection 
process. Here, we set the accumulator pressure to leak from 
20 MPa to 15 MPa. All of these faults affect the pressure 
fluctuation in the common rail pipeline of a diesel engine. 
The simulation results are shown in Fig. 8 but it is difficult 
to recognise the fault types.

Fig. 6. Amesim model of fuel injection system
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Fig. 8. Fuel pressure waveform under different working conditions

EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the fault diagnosis of an ME fuel injection 
system uses HMFDE to extract the matrix form features and 
SMM to realise the classification. The fault diagnosis process 
is shown as below:

Step 1: The measured signals of different fuel injection 
fault patterns are collected by simulation and then 20 samples 
are selected as training data and 30 samples as testing data. 
Therefore, there are 80 groups of training data and 120 groups 
of test data, in total. 

Step 2: The HMFDE approach is presented to extract fault 
features directly from the training and testing samples in 
matrix form. 

Step 3: The fault classification algorithm is introduced to 
build the multiclass SMM, and the HMFDE values of training 
samples are used for training SMM. 

Step 4: The HMFDE values of testing samples are fed into 
the trained SMM-based binary tree to identify fuel injection 
system fault patterns.  

According to the fault diagnosis method, the proposed 
feature extraction approach is utilised to extract fault features 
for each scale and each hierarchical layer from the sample set; 
the corresponding HMFDE values of different fuel injection 
system fault patterns are illustrated in Fig. 9. To increase the 
robustness of classification results, the research randomly 
selects the HMFDE of 80 training samples under four working 
conditions, to train SMM, and the optimum model of SMM 

is estimated. Eventually, the research selects the remaining 
HMFDE of 120 test samples to validate the effectiveness 
of the SMM model and the confusion matrix is shown in 
Fig. 11(a). It can be seen that the accuracy rate reaches 97.5%, 
there is only one misdiagnosed sample for the ‘solenoid valve 
stuck’ working condition and two misdiagnosed samples for 
the ‘solenoid valve power failure’ working condition, while 
other working conditions have been perfectly recognised. 
This is because both situations have a strong influence on 
the fuel injection process and cause an increase in the fuel 
pressure fluctuation of the common rail fuel pipe. When the 
accumulator leaks, it will only affect the duration of the fuel 
injection and it has little effect on the action of the injector 
needle valve. 

Then, the matrix characteristic features of HMFDE are 
vectorised, to verify the validity and rationality of the matrix 
features. In contrast to this, a support vector machine (SVM) 
is used as a classifier to recognise the fault types. Comparison 
tests are conducted eight times and the results are shown in 
Fig.10. As can be seen from this picture, the combination 
of HMFDE and SMM has higher fault diagnosis accuracy, 
with an average of 3 percentage points. This means that the 
matrix formation has richer information in the HMFDE value.
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To further verify the effectiveness of the method, the 
research also selects the existing entropy-based fault diagnosis 
method for comparison, e.g. MFDE, HDE, MDE and so on. 
The detailed parameter settings of these methods are listed in 
Table 12. The comparison test uses the same training data and 
testing data, and each method is carried out five times. The 
average accuracy and time consumed are shown in Table 13. 
The method proposed in this paper has the highest diagnostic 
accuracy, while the time consumed is at a relevant low level. 
Based on the above analysis, it can be verified that HMFDE 
is superior to the existing common information entropy 
method, in expressing the complexity of time series; it also 
verifies the feasibility and superiority of the fuel injection 
system diagnosis method, based on the HMFDE-SMM 
method. The confusion matrix of the six methods is shown 
in Fig. 11. Fault 1 and fault 2 are easily confused, which further 
explains why a fault with the solenoid valve will have an 
impact on diesel engine oil pressure in the common rail pipe. 
However, the influence on pressure varies with the degree of 
solenoid valve failure. In fact, a solenoid valve failure fault will 
further lead to power imbalance, exhaust temperature rise, 
wheelbase wear and other faults in a diesel engine. Therefore, 
the diagnosis technology can effectively improve the diagnosis 
efficiency on the fuel injection system of an ME diesel engine, 
so as to ensure the economic and efficient operation of the 
whole diesel engine.
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Fig. 10. Accuracy of contrast test

Tab. 12. Parameters of different methods

Method Classifier Parameters

HMDE SMM k=3,m=3,c=6,τ=1, scale=10

HPE SVM k=3,m=3,τ=1

MFDE SVM m=3,c=6,τ=1, scale=10

MDE SVM m=3,c=6,τ=1, scale=10

MSE SVM m=3,scale=10, r=0.1

 
(a) Normal working condition (b) ‘Solenoid valve stuck’ condition

 
(c) Solenoid valve power failure  (d) Accumulator leakage condition

Fig. 9. HMFDE value of different working conditions.
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Tab. 13. Comparison of different methods

Methods HMFDE HMDE HPE MDE MFDE MSE

Accuracy 97.5% 95.8% 86.7% 95.8% 96.7% 91.6%

Consuming time(s) 8.5 s 7.9 s 17.7 s 6.6 s 8.2 s 28.3 s

 
(a) HMFDE (b) HMDE

 

(c) HPE (d) MFDE

 

(e) MDE f) MSE

Fig. 11. Confusion matrix of different methods
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CONCLUSION

This paper proposes a novel fault diagnosis method, based 
on hierarchical HMFDE and SMM, for the fuel injection 
system of an ME two-stroke diesel engine and the effectiveness 
of the algorithm is verified by modelling data from the fuel 
injection system. The paper contributes the following.
1. Through experiment and simulation, the simulation model 

of the fuel injection system is established, which provides a 
simple and efficient way for further analysis of the working 
mechanism. 

2. The HMFDE algorithm is proposed, which combines the 
advantages of HSE and MDE. The influence of parameter 
variations on calculation accuracy and efficiency is 
discussed. The method can extract the matrix form features 
and capture more, hidden fault information.

3. The SMM is used as the classifier. Compared with existing 
signal classifiers, which are based on vector-form data, the 
SMM can leverage the inherent structural information of 
fault signals for more accurate multiclass classification.

4. Compared with HMDE, HPE, MDE, MFDE and MSE, 
the HMFDE has the highest classification ability, which 
provides a new way of thinking about the signal complexity 
evaluation method based on entropy parameters. It 
also provides a new method for fault diagnosis in an 
electronically controlled marine two-stroke diesel engine. 
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